Table of Contents
Chemotherapy Research and Practice
Volume 2014, Article ID 972646, 6 pages
http://dx.doi.org/10.1155/2014/972646
Research Article

Carbapenem Resistance among Enterobacter Species in a Tertiary Care Hospital in Central India

Department of Microbiology, Armed Forces Medical College, Pune 411040, India

Received 27 April 2014; Revised 12 July 2014; Accepted 16 July 2014; Published 10 August 2014

Academic Editor: Vassilis Georgoulias

Copyright © 2014 Atul Khajuria et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. C. Washington Jr., S. D. Allen, W. M. Janda et al., “The Enterobacteriaceae,” in Color Atlas and Textbook of Diagnostic Microbiology, chapter 6, pp. 211–302, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2006. View at Google Scholar
  2. M. S. Favero, R. P. Gaynes, T. C. Horan et al., “National nosocomial infections surveillance (NNIS) report, data summary from October 1986-April 1996, issued May 1996,” American Journal of Infection Control, vol. 24, no. 5, pp. 380–388, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Paterson, W. Ko, A. Von Gottberg et al., “In vitro susceptibility and clinical outcomes of bacteremia due to extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae,” Clinical Infectious Diseases, vol. 27, article 956, 1998. View at Google Scholar
  4. J. G. Collee, R. S. Miles, and B. Wan, “Tests for the identification of bacteria,” in Mackie and McCartney Practical Medical Microbiology, J. G. Collee, A. G. Fraser, B. P. Marmion, and A. Simmons, Eds., pp. 131–150, Churchill Livingstone, Edinburgh, UK, 14th edition, 1996. View at Google Scholar
  5. Clinical and Laboratory Standards Institute, Performance Standards for Antimicrobial Susceptibility Testing: Twenty Second Informational Supplement M100-S22, CLSI, Wayne, Pa, USA, 2012.
  6. European Committee on Antimicrobial Susceptibility Testing, Breakpoint tables for interpretation of MICs and zone diameters (Version 2), 2012, http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Breakpoint_table_v_2.0_120221.pdf.
  7. K. Lee, Y. S. Lim, D. Yong, J. H. Yum, and Y. Chong, “Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp.,” Journal of Clinical Microbiology, vol. 41, no. 10, pp. 4623–4629, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Franklin, L. Liolios, and A. Y. Peleg, “Phenotypic detection of carbapenem-susceptible metallo-β-lactamase- producing gram-negative bacilli in the clinical laboratory,” Journal of Clinical Microbiology, vol. 44, no. 9, pp. 3139–3144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Oliver, L. M. Weigel, J. Kamile Rasheed, J. E. McGowan Jr., P. Raney, and F. C. Tenover, “Mechanisms of decreased susceptibility to cefpodoxime in Escherichia coli,” Antimicrobial Agents and Chemotherapy, vol. 46, no. 12, pp. 3829–3836, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Villalón, S. Valdezate, M. J. Medina-Pascual, G. Carrasco, A. Vindel, and J. A. Saez-Nieto, “Epidemiology of the acinetobacter-derived cephalosporinase, carbapenem-hydrolysing oxacillinase and metallo-β-lactamase genes, and of common insertion sequences, in epidemic clones of acinetobacter baumannii from Spain,” Journal of Antimicrobial Chemotherapy, vol. 68, no. 3, pp. 550–553, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Poirel, A. Potron, and P. Nordmann, “OXA-48-like carbapenemases: the phantom menace,” Journal of Antimicrobial Chemotherapy, vol. 67, pp. 1597–1606, 2012. View at Google Scholar
  12. S. S. Hong, K. Kim, J. Y. Huh, B. Jung, M. S. Kang, and S. G. Hong, “Multiplex PCR for rapid detection of genes encoding class A carbapenemases,” Annals of Laboratory Medicine, vol. 32, no. 5, pp. 359–361, 2012. View at Google Scholar
  13. J. Versalovic, T. Koeuth, and J. R. Lupski, “Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes,” Nucleic Acids Research, vol. 19, no. 24, pp. 6823–6831, 1991. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Vogel, G. Jones, S. Triep, A. Koek, and L. Dijkshoorn, “RAPD typing of Klebsiella pneumoniae, Klebsiella oxytoca, Serratia marcescens and Pseudomonas aeruginosa isolates using standardized reagents,” Clinical Microbiology and Infection, vol. 5, no. 5, pp. 270–276, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Carattoli, A. Bertini, L. Villa, V. Falbo, K. L. Hopkins, and E. J. Threlfall, “Identification of plasmids by PCR-based replicon typing,” Journal of Microbiological Methods, vol. 63, no. 3, pp. 219–228, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. P. M. A. Shanahan, B. A. Wylie, P. V. Adrian, H. J. Koornhof, C. J. Thomson, and S. G. B. Amyes, “The prevalence of antimicrobial resistance in human faecal flora in South Africa,” Epidemiology and Infection, vol. 111, no. 2, pp. 221–228, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Srámová, M. Daniel, V. Absolonová et al., “Epidemiological role of arthropods detectable in health facilities,” Journal of Hospital Infection, vol. 20, no. 4, pp. 281–292, 1992. View at Google Scholar
  18. E. Lindh, P. Kjaeldgaard, W. Frederiksen, and J. Ursing, “Phenotypical properties of Enterobacter agglomerans (Pantoea agglomerans) from human, animal and plant sources,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 99, no. 4, pp. 347–352, 1991. View at Google Scholar · View at Scopus
  19. J. W. Chow, V. L. Yu, and D. M. Shlaes, “Epidemiologic perspectives on Enterobacter for the infection control professional,” The American Journal of Infection Control, vol. 22, no. 4, pp. 195–201, 1994, Review. View at Publisher · View at Google Scholar · View at Scopus
  20. N. S. Matsaniotis, V. P. Syriopoulou, M. C. Theodoridou, K. G. Tzanetou, and G. I. Mostrou, “Enterobacter sepsis in infants and children due to contaminated intravenous fluids,” Infection Control, vol. 5, no. 10, pp. 471–477, 1984. View at Google Scholar · View at Scopus
  21. C. G. Mayhall, V. A. Lamb, W. E. Gayle Jr., and B. W. Haynes Jr., “Enterobacter cloacae septicemia in a burn center: epidemiology and control of an outbreak,” Journal of Infectious Diseases, vol. 139, no. 2, pp. 166–171, 1979. View at Publisher · View at Google Scholar · View at Scopus
  22. J. P. Flaherty, S. Garcia-Houchins, R. Chudy, and P. M. Arnow, “An outbreak of gram-negative bacteremia traced to contaminated O-rings in reprocessed dialyzers,” Annals of Internal Medicine, vol. 119, no. 11, pp. 1072–1078, 1993. View at Publisher · View at Google Scholar · View at Scopus
  23. S. J. McConkey, D. C. Coleman, F. R. Falkiner, S. R. McCann, and P. A. Daly, “Enterobacter cloacae in a haematology/oncology ward—first impressions,” Journal of Hospital Infection, vol. 14, no. 4, pp. 277–284, 1989. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Verbist, “Epidemiology and sensitivity of 8625 ICU and hematology/oncology bacterial isolates in Europe,” Scandinavian Journal of Infectious Diseases, Supplement, no. 91, pp. 14–24, 1993. View at Google Scholar · View at Scopus
  25. A. Tsakris, A. P. Johnson, R. C. George, S. Mehtar, and A. C. Vatopoulos, “Distribution and transferability of plasmids encoding trimethoprim resistance in urinary pathogens from Greece,” Journal of Medical Microbiology, vol. 34, no. 3, pp. 153–157, 1991. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Tzelepi, L. S. Tzouvelekis, A. C. Vatopoulos, A. F. Mentis, A. Tsakris, and N. J. Legakis, “High prevalence of stably derepressed class-I β-lactamase expression in multiresistant clinical isolates of Enterobacter cloacae from Greek hospitals,” Journal of Medical Microbiology, vol. 37, no. 2, pp. 91–95, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. P. E. Varaldo, F. Biavasco, S. Mannelli, R. Pompei, and A. Proietti, “Distribution and antibiotic susceptibility of extraintestinal clinical isolates of Klebsiella, Enterobacter and Serratia species,” European Journal of Clinical Microbiology & Infectious Diseases, vol. 7, no. 4, pp. 495–500, 1988. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Vázquez, M. C. Mendoza, M. H. Villar, F. Pérez, and F. J. Méndez, “Survey of bacteraemia in a Spanish hospital over a decade (1981–1990),” Journal of Hospital Infection, vol. 26, pp. 111–121, 1994. View at Google Scholar
  29. N. J. Legakis and A. Tsakris, “Antibiotic resistance mechanisms in gram-negative bacteria: the Greek experience,” International Journal of Experimental and Clinical Chemotherapy, vol. 5, no. 2, pp. 83–91, 1992. View at Google Scholar · View at Scopus
  30. L. Leibovici, A. J. Wysenbeek, H. Konisberger, Z. Samra, S. D. Pitlik, and M. Drucker, “Patterns of multiple resistance to antibiotics in gram-negative bacteria demonstrated by factor analysis,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 11, no. 9, pp. 782–788, 1992. View at Publisher · View at Google Scholar · View at Scopus
  31. Centers for Disease Control and Prevention (CDC), “Detection of Enterobacteriaceae isolates carrying metallo-beta-lactamase—United States, 2010,” Morbidity and Mortality Weekly Report, vol. 59, no. 24, p. 750, 2010. View at Google Scholar
  32. A. U. Khan and P. Nordmann, “NDM-1-producing enterobacter cloacae and klebsiella pneumoniae from diabetic foot ulcers in India,” Journal of Medical Microbiology, vol. 61, no. 3, pp. 454–456, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Lascols, M. Hackel, S. H. Marshall et al., “Increasing prevalence and dissemination of NDM-1 metallo-β-lactamase in India: data from the SMART study (2009),” Journal of Antimicrobial Chemotherapy, vol. 66, no. 9, pp. 1992–1997, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Castanheira, L. M. Deshpande, D. Mathai, J. M. Bell, R. N. Jones, and R. E. Mendes, “Early dissemination of NDM-1- and OXA-181-producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006-2007,” Antimicrobial Agents and Chemotherapy, vol. 55, no. 3, pp. 1274–1278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Teo, G. Ngan, M. Balm, R. Jureen, P. Krishnan, and R. Lin, “Molecular characterization of NDM-1 producing Enterobacteriaceae isolates in Singapore hospitals,” Western Pacific Surveillance and Response Journal, vol. 3, no. 1, pp. 19–24, 2012. View at Publisher · View at Google Scholar
  36. W. Dai, S. Sun, P. Yang, S. Huang, X. Zhang, and L. Zhang, “Characterization of carbapenemases, extended spectrum β-lactamases and molecular epidemiology of carbapenem-non-susceptible Enterobacter cloacae in a Chinese hospital in Chongqing,” Infection, Genetics and Evolution, vol. 14, no. 1, pp. 1–7, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. B. A. Rogers, H. E. Sidjabat, A. Silvey et al., “Treatment options for New Delhi metallo-beta-lactamase-harboring enterobacteriaceae,” Microbial Drug Resistance, vol. 19, no. 2, pp. 100–103, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. J. K. Rasheed, B. Kitchel, W. Zhu et al., “New Delhi metallo-β-lactamase-producing enterobacteriaceae, United States,” Emerging Infectious Diseases, vol. 19, no. 6, pp. 870–878, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Peirano, B. J. Ahmed, J. Fuller, J. E. Rubin, and J. D. Pitout, “Travel-related carbapenemase-producing Gram negatives in Alberta, Canada: the first three years,” Journal of Clinical Microbiology, 2014. View at Google Scholar
  40. L. Poirel, M. Yilmaz, A. Istanbullu et al., “Spread of NDM-1-producing Enterobacteriaceae in a neonatal intensive care unit, Istanbul, Turkey,” Antimicrobial Agents and Chemotherapy, 2014. View at Publisher · View at Google Scholar
  41. W. Jamal, V. O. Rotimi, M. J. Albert, F. Khodakhast, P. Nordmann, and L. Poirel, “High prevalence of VIM-4 and NDM-1 metallo-β-lactamase among carbapenem-resistant enterobacteriaceae,” Journal of Medical Microbiology, vol. 62, no. 8, pp. 1239–1244, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. L. M. Deshpande, R. N. Jones, T. R. Fritsche, and H. S. Sader, “Occurrence and characterization of carbapenemase-producing enterobacteriaceae: report from the SENTRY Antimicrobial Surveillance Program (2000–2004),” Microbial Drug Resistance, vol. 12, no. 4, pp. 223–230, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. J. Yan, W. C. Ko, C. L. Chuang, and J. J. Wu, “Metallo-β-lactamase-producing Enterobacteriaceae isolates in a university hospital in Taiwan: prevalence of IMP-8 in Enterobacter cloacae and first identification of VIM-2 in Citrobacter freundii,” Journal of Antimicrobial Chemotherapy, vol. 50, no. 4, pp. 503–511, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. F. Luzzaro, J. D. Docquier, C. Colinon et al., “Emergence in Klebsiella pneumoniae and Enterobacter cloacae clinical isolates of the VIM-4 metallo-beta-lactamase encoded by a conjugative plasmid,” Antimicrobial Agents and Chemotherapy, vol. 48, no. 2, pp. 648–650, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Perilli, M. L. Mezzatesta, M. Falcone et al., “Class I integron-borne blaVIM-1 carbapenemase in a strain of Enterobacter cloacae responsible for a case of fatal pneumonia,” Microbial Drug Resistance, vol. 14, no. 1, pp. 45–47, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Falcone, M. L. Mezzatesta, M. Perilli et al., “Infections with VIM-1 metallo-β-lactamase-producing Enterobacter cloacae and their correlation with clinical outcome,” Journal of Clinical Microbiology, vol. 47, no. 11, pp. 3514–3519, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. M. F. Lee, C. F. Peng, H..J. Hsu, and Y. H. Chen, “Molecular characterisation of the metallo-beta-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan,” International Journal of Antimicrobial Agents, vol. 32, no. 6, pp. 475–480, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Panopoulou, E. Alepopoulou, A. Ikonomidis, A. Grapsa, E. Paspalidou, and S. Kartali-Ktenidou, “Emergence of VIM-12 in Enterobacter cloacae,” Journal of Clinical Microbiology, vol. 48, no. 9, pp. 3414–3415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Poirel, A. Ros, A. Carrër et al., “Cross-border transmission of OXA-48-producing Enterobacter cloacae from Morocco to France,” Journal of Antimicrobial Chemotherapy, vol. 66, no. 5, pp. 1181–1182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Carrër, L. Poirel, M. Yilmaz et al., “Spread of OXA-48-encoding plasmid in Turkey and beyond,” Antimicrobial Agents and Chemotherapy, vol. 54, no. 3, pp. 1369–1373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. A. J. Brink, J. Coetzee, C. G. Clay et al., “Emergence of New Delhi metallo-beta-lactamase (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC-2) in South Africa,” Journal of Clinical Microbiology, vol. 50, no. 2, pp. 525–527, 2012. View at Publisher · View at Google Scholar · View at Scopus
  52. V. A. Ageevets, I. V. Partina, E. S. Lisitsina et al., “Susceptibility of gramnegative carbapenemase-producing bacteria to various group antibiotics,” Antibiot Khimioter, vol. 58, pp. 10–13, 2013 (Russian). View at Google Scholar