Table of Contents
Chinese Journal of Engineering
Volume 2013, Article ID 453872, 8 pages
http://dx.doi.org/10.1155/2013/453872
Research Article

Reduced Precision Redundancy for Satellite Telecommand Receiver Module on FPGA

National University of Science and Technology (NUST), H-12, Islamabad, Pakistan

Received 14 July 2013; Accepted 16 August 2013

Academic Editors: M. Brünig, A. Che, and F. Qiao

Copyright © 2013 Salman Sadruddin and Arshad Aziz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Caffrey, “A space-based reconfigurable radio,” in Proceedings of the International Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA '02), pp. 49–53, Las Vegas, Nev, USA, June 2002.
  2. P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of single-event upset in digital microelectronics,” IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 583–602, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Carmichael, “Triple module redundancy design techniques for Virtex FPGAs,” Tech. Rep. XAPP197 (v1.0), Xilinx Corporation, 2001. View at Google Scholar
  4. B. Shim and N. R. Shanbhag, “Reduced precision redundancy for low-power digital filtering,” in Proceedings of the 35th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 148–152, Pacific Grove, Calif, USA, November 2001. View at Scopus
  5. J. Snodgrass, Low-power fault tolerance for spacecraft FPGA-based numerical computing [Ph.D. thesis], Department of Electrical and Computer Engineering, Naval Postgraduate School, Monterey, Calif, USA, 2006.
  6. B. Pratt, M. Fuller, M. Rice, and M. Wirthlin, “Reduced-precision redundancy for reliable FPGA communications systems in high-radiation environments,” IEEE Transaction on Aerospace and Electronic Systems, vol. 49, no. 1, pp. 369–380, 2013. View at Publisher · View at Google Scholar
  7. J. A. Maya, N. A. Casco, P. A. Roncagliolo, and J. G. García, “A high data rate BPSK receiver implementation in FPGA for high dynamics applications,” in Proceedings of the 7th Southern Conference on Programmable Logic (SPL '11), pp. 233–238, Cordoba, Spain, April 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. Z. Zhao, Y. Shen, and Y. Bai, “Design and implementation of the BPSK modem based on software defined radio,” in Proceedings of the 1st International Conference on Instrumentation and Measurement, Computer, Communication and Control (IMCCC '11), pp. 780–784, Los Alamitos, Calif, USA, October 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Si and T. Cheng, “Efficient FPGA implementation of spread spectrum transceiver,” in Proceedings of the 9th International Conference on Advanced Communication Technology (ICACT '07), pp. 464–467, Gangwon-Do, Republic of Korea, February 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Zhi, J. Zhou, L. Qing, and Z. Xiaoyang, “Efficient carrier recovery for high-order QAM,” in Proceedings of the International Conference on Consumer Electronics (ICCE '07), pp. 1–2, Las Vegas, Nev, USA, January 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Shamla and K. G. G. Devi, “Design and implementation of costas loop for BPSK demodulator,” in Proceedings of the Annual IEEE India Conference (INDICON '12), pp. 785–789, Kochi, India, December 2012. View at Publisher · View at Google Scholar
  12. M. A. Sullivan, Reduced precision redundancy applied to arithmetic operations in field programmable gate arrays for satellite control and sensor systems [M.S. thesis], Department of Mechanical and Astronautical Engineering and Department of Electrical and Computer Engineering, Naval Postgraduate School, Monterey, Calif, USA, 2008.