Table of Contents
Chinese Journal of Engineering
Volume 2013, Article ID 470696, 12 pages
http://dx.doi.org/10.1155/2013/470696
Research Article

Analysis of Radiative Radial Fin with Temperature-Dependent Thermal Conductivity Using Nonlinear Differential Transformation Methods

1Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran 14174, Iran
2Department of Agriculture, Forest, Nature and Energy (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
3Unité de Physique des Dispositifs à Semi-Conducteurs, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisia

Received 8 August 2013; Accepted 1 September 2013

Academic Editors: B.-Y. Cao and J.-w. Zhou

Copyright © 2013 Mohsen Torabi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Kraus, A. Aziz, and J. R. Welty, Extended Surface Heat Transfer, John Wiley, New York, NY, USA, 2002.
  2. B. Kundu, “Performance and optimum design analysis of longitudinal and pin fins with simultaneous heat and mass transfer: unified and comparative investigations,” Applied Thermal Engineering, vol. 27, no. 5-6, pp. 976–987, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. B. Kundu, “Performance and optimization analysis of SRC profile fins subject to simultaneous heat and mass transfer,” International Journal of Heat and Mass Transfer, vol. 50, no. 7-8, pp. 1545–1558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. S. B. Coşkun and M. T. Atay, “Analysis of convective straight and radial fins with temperature-dependent thermal conductivity using variational iteration method with comparison with respect to finite element analysis,” Mathematical Problems in Engineering, vol. 2007, Article ID 42072, 15 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. B. Coşkun and M. T. Atay, “Fin efficiency analysis of convective straight fins with temperature dependent thermal conductivity using variational iteration method,” Applied Thermal Engineering, vol. 28, no. 17-18, pp. 2345–2352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. M. H. Sharqawy and S. M. Zubair, “Efficiency and optimization of straight fins with combined heat and mass transfer-an analytical solution,” Applied Thermal Engineering, vol. 28, no. 17-18, pp. 2279–2288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Domairry and M. Fazeli, “Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 2, pp. 489–499, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Arslanturk, “Correlation equations for optimum design of annular fins with temperature dependent thermal conductivity,” Heat and Mass Transfer, vol. 45, no. 4, pp. 519–525, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. D. B. Kulkarni and M. M. Joglekar, “Residue minimization technique to analyze the efficiency of convective straight fins having temperature-dependent thermal conductivity,” Applied Mathematics and Computation, vol. 215, no. 6, pp. 2184–2191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Khani, M. A. Raji, and H. H. Nejad, “Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 8, pp. 3327–3338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Kundu, “Analysis of thermal performance and optimization of concentric circular fins under dehumidifying conditions,” International Journal of Heat and Mass Transfer, vol. 52, no. 11-12, pp. 2646–2659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. N. Bouaziz and A. Aziz, “Simple and accurate solution for convective-radiative fin with temperature dependent thermal conductivity using double optimal linearization,” Energy Conversion and Management, vol. 51, no. 12, pp. 2776–2782, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Khani and A. Aziz, “Thermal analysis of a longitudinal trapezoidal fin with temperature-dependent thermal conductivity and heat transfer coefficient,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 3, pp. 590–601, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. K. Zhou, Differential Transform and Its Applications for Electrical CircuIts, Huarjung University Press, Wuhan, China, 1986.
  15. I. H. Abdel-Halim Hassan, “Application to differential transformation method for solving systems of differential equations,” Applied Mathematical Modelling, vol. 32, no. 12, pp. 2552–2559, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. A. S. V. Ravi Kanth and K. Aruna, “Solution of singular two-point boundary value problems using differential transformation method,” Physics Letters A, vol. 372, no. 26, pp. 4671–4673, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. H. S. Yalcin, A. Arikoglu, and I. Ozkol, “Free vibration analysis of circular plates by differential transformation method,” Applied Mathematics and Computation, vol. 212, no. 2, pp. 377–386, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Jang, “Solving linear and nonlinear initial value problems by the projected differential transform method,” Computer Physics Communications, vol. 181, no. 5, pp. 848–854, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Yaghoobi, P. Khoshnevisrad, and A. Fereidoon, “Application of the differential transformation method to a modified van der pol oscillator,” Nonlinear Science Letter A, vol. 2, pp. 171–180, 2011. View at Google Scholar
  20. H. Yaghoobi and M. Torabi, “Analytical solution for settling of non-spherical particles in incompressible Newtonian media,” Powder Technology, vol. 221, pp. 453–463, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Torabi and H. Yaghoobi, “Accurate solution for acceleration motion of a vertically falling spherical particle in incompressible newtonian media,” Canadian Journal of Chemical Engineering, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. H. P. Chu and C. L. Chen, “Hybrid differential transform and finite difference method to solve the nonlinear heat conduction problem,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 8, pp. 1605–1614, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. P. Chu and C. Y. Lo, “Application of the hybrid differential transform-finite difference method to nonlinear transient heat conduction problems,” Numerical Heat Transfer A, vol. 53, no. 3, pp. 295–307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Y. Lo and B. Y. Chen, “Application of hybrid differential transform/control-volume method to hyperbolic heat conduction problems,” Numerical Heat Transfer B, vol. 55, no. 3, pp. 219–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. A. Joneidi, D. D. Ganji, and M. Babaelahi, “Differential transformation method to determine fin efficiency of convective straight fins with temperature dependent thermal conductivity,” International Communications in Heat and Mass Transfer, vol. 36, no. 7, pp. 757–762, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Jang, Y. Yeh, C. Chen, and W. Yeh, “Differential transformation approach to thermal conductive problems with discontinuous boundary condition,” Applied Mathematics and Computation, vol. 216, no. 8, pp. 2339–2350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. M. Rashidi, N. Laraqi, and S. M. Sadri, “A novel analytical solution of mixed convection about an inclined flat plate embedded in a porous medium using the DTM-Padé,” International Journal of Thermal Sciences, vol. 49, no. 12, pp. 2405–2412, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Yaghoobi and M. Torabi, “The application of differential transformation method to nonlinear equations arising in heat transfer,” International Communications in Heat and Mass Transfer, vol. 38, no. 6, pp. 815–820, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. D. D. Ganji, M. Rahimi, M. Rahgoshay, and M. Jafari, “Analytical and numerical investigation of fin efficiency and temperature distribution of conductive, convective, and radiative straight fins,” Heat Transfer, vol. 40, no. 3, pp. 233–245, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Tari, D. D. Ganji, and H. Babazadeh, “The application of He's variational iteration method to nonlinear equations arising in heat transfer,” Physics Letters A, vol. 363, no. 3, pp. 213–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Arslanturk, “Optimum design of space radiators with temperature-dependent thermal conductivity,” Applied Thermal Engineering, vol. 26, no. 11-12, pp. 1149–1157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. S. Abbasbandy, “The application of homotopy analysis method to nonlinear equations arising in heat transfer,” Physics Letters A, vol. 360, no. 1, pp. 109–113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, McGraw-Hill, New York, NY, USA, 1972.
  34. M. Agida and A. S. Kumar, “A Boubaker polynomials expansion scheme solution to random Love's equation in the case of a rational Kernel,” Electronic Journal of Theoretical Physics, vol. 7, no. 24, pp. 319–326, 2010. View at Google Scholar · View at Scopus
  35. P. Barry and A. Hennessy, “Meixner-type results for Riordan arrays and associated integer sequences,” Journal of Integer Sequences, vol. 13, no. 9, pp. 1–34, 2010. View at Google Scholar · View at Scopus
  36. A. Belhadj, O. F. Onyango, and N. Rozibaeva, “Boubaker polynomials expansion scheme-related heat transfer investigation inside keyhole model,” Journal of Thermophysics and Heat Transfer, vol. 23, no. 3, pp. 639–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Belhadj, J. Bessrour, M. Bouhafs, and L. Barrallier, “Experimental and theoretical cooling velocity profile inside laser welded metals using keyhole approximation and Boubaker polynomials expansion,” Journal of Thermal Analysis and Calorimetry, vol. 97, no. 3, pp. 911–915, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. K. B. Ben Mahmoud and M. Amlouk, “The 3D Amlouk-Boubaker expansivity-energy gap-Vickers hardness abacus: a new tool for optimizing semiconductor thin film materials,” Materials Letters, vol. 63, no. 12, pp. 991–994, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Benhaliliba, C. E. Benouis, K. Boubaker, M. Amlouk, and A. Amlouk, “A new guide to thermally optimized doped oxides monolayer spray-grown solar cells: the Amlouk-boubaker optothermal expansivity ψab in the book,” in Solar Cells-New Aspects and Solutions, L. A. Kosyachenko, Ed., pp. 27–41, 2011. View at Google Scholar
  40. M. Dada, O. B. Awojoyogbe, and K. Boubaker, “Heat transfer spray model: an improved theoretical thermal time-response to uniform layers deposit using Bessel and Boubaker polynomials,” Current Applied Physics, vol. 9, no. 3, pp. 622–624, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Fridjine and M. Amlouk, “A new parameter: an abacus for optimizing PVT hybrid solar device functional materials using the boubaker polynomials expansion scheme,” Modern Physics Letters B, vol. 23, no. 17, pp. 2179–2191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Fridjine, K. B. Ben Mahmoud, M. Amlouk, and M. Bouhafs, “A study of sulfur/selenium substitution effects on physical and mechanical properties of vacuum-grown ZnS1-xSex compounds using Boubaker polynomials expansion scheme (BPES),” Journal of Alloys and Compounds, vol. 479, no. 1-2, pp. 457–461, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Ghanouchi, H. Labiadh, and K. Boubaker, “An attempt to solve the heat transfer equation in a model of pyrolysis spray using 4q-order m-boubaker polynomials,” International Journal of Heat and Technology, vol. 26, no. 1, pp. 49–53, 2008. View at Google Scholar · View at Scopus
  44. T. Ghrib, K. Boubaker, and M. Bouhafs, “Investigation of thermal diffusivitymicrohardness correlation extended to surface-nitrured steel using Boubaker polynomials expansion,” Modern Physics Letters B, vol. 22, no. 29, pp. 2893–2907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. C. Khélia, K. Boubaker, T. Ben Nasrallah, M. Amlouk, and S. Belgacem, “Morphological and thermal properties of β-SnS2 sprayed thin films using Boubaker polynomials expansion,” Journal of Alloys and Compounds, vol. 477, no. 1-2, pp. 461–467, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. A. S. Kumar, “An analytical solution to applied mathematics-related Love's equation using the Boubaker polynomials expansion scheme,” Journal of the Franklin Institute, vol. 347, no. 9, pp. 1755–1761, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Lazzez, K. B. Ben Mahmoud, S. Abroug, F. Saadallah, and M. Amlouk, “A Boubaker polynomials expansion scheme (BPES)-related protocol for measuring sprayed thin films thermal characteristics,” Current Applied Physics, vol. 9, no. 5, pp. 1129–1133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Milgram, “The stability of the Boubaker polynomials expansion scheme (BPES)-based solution to Lotka-Volterra problem,” Journal of Theoretical Biology, vol. 271, no. 1, pp. 157–158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Rahmanov, “A solution to the non linear Korteweg-De-Vries equation in the particular case dispersion-adsorption problem in porous media using the spectral Boubaker polynomials expansion scheme (BPES),” Studies in Nonlinear Sciences, vol. 2, no. 1, pp. 46–49, 2011. View at Google Scholar
  50. S. Slama, M. Bouhafs, and K. B. Ben Mahmoud, “A boubaker polynomials solution to heat equation for monitoring A3 point evolution during resistance spot welding,” International Journal of Heat and Technology, vol. 26, no. 2, pp. 141–145, 2008. View at Google Scholar · View at Scopus
  51. A. Yildirim, S. T. Mohyud-Din, and D. H. Zhang, “Analytical solutions to the pulsed Klein-Gordon equation using Modified Variational Iteration Method (MVIM) and Boubaker Polynomials Expansion Scheme (BPES),” Computers and Mathematics with Applications, vol. 59, no. 8, pp. 2473–2477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. E. J. Kontoghiorghes, “Parallel strategies for computing the orthogonal factorizations used in the estimation of econometric models,” Algorithmica, vol. 25, no. 1, pp. 58–74, 1999. View at Google Scholar · View at Scopus
  53. M. Benhamadou, “New method to solve large linear systems: the algorithm of ‘recursive reduction’,” Advances in Engineering Software, vol. 31, no. 7, pp. 481–491, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. A. H. Hassan, “Differential transformation technique for solving higher-order initial value problems,” Applied Mathematics and Computation, vol. 154, no. 2, pp. 299–311, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Torabi, H. Yaghoobi, and A. Aziz, “Analytical solution for convective-radiative continuously moving fin with temperature-dependent thermal conductivity,” International Journal of Thermophysics, vol. 33, pp. 924–941, 2012. View at Publisher · View at Google Scholar · View at Scopus