Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2009, Article ID 383086, 3 pages
http://dx.doi.org/10.1155/2009/383086
Hypothesis

Do Neural Cells Communicate with Endothelial Cells via Secretory Exosomes and Microvesicles?

Department of Psychiatry, UIC Psychiatric Institute MC912, University of Illinois at Chicago, 1601 W. Taylor Street, Chicago, IL 60612, USA

Received 28 April 2009; Accepted 15 June 2009

Academic Editor: Hari Manev

Copyright © 2009 Neil R. Smalheiser. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. R. Smalheiser, “Exosomal transfer of proteins and RNAs at synapses in the nervous system,” Biology Direct, vol. 2, article 35, 2007. View at Publisher · View at Google Scholar · View at PubMed
  2. A. R. Taylor, M. B. Robinson, D. J. Gifondorwa, M. Tytell, and C. E. Milligan, “Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases,” Developmental Neurobiology, vol. 67, no. 13, pp. 1815–1829, 2007. View at Publisher · View at Google Scholar · View at PubMed
  3. F. A. Court, W. T. Hendriks, H. D. MacGillavry, J. Alvarez, and J. van Minnen, “Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system,” Journal of Neuroscience, vol. 28, no. 43, pp. 11024–11029, 2008. View at Publisher · View at Google Scholar · View at PubMed
  4. G. van Niel, I. Porto-Carreiro, S. Simoes, and G. Raposo, “Exosomes: a common pathway for a specialized function,” Journal of Biochemistry, vol. 140, no. 1, pp. 13–21, 2006. View at Publisher · View at Google Scholar · View at PubMed
  5. Y. Fang, N. Wu, X. Gan, W. Yan, J. C. Morrell, and S. J. Gould, “Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes,” PLoS Biology, vol. 5, no. 6, p. e158, 2007. View at Publisher · View at Google Scholar · View at PubMed
  6. E. Cocucci, G. Racchetti, and J. Meldolesi, “Shedding microvesicles: artefacts no more,” Trends in Cell Biology, vol. 19, no. 2, pp. 43–51, 2009. View at Publisher · View at Google Scholar · View at PubMed
  7. C. Théry, M. Ostrowski, and E. Segura, “Membrane vesicles as conveyors of immune responses,” Nature Reviews Immunology, vol. 9, pp. 581–593, 2009. View at Publisher · View at Google Scholar · View at PubMed
  8. J. Faure, G. Lachenal, M. Court et al., “Exosomes are released by cultured cortical neurones,” Molecular and Cellular Neuroscience, vol. 31, no. 4, pp. 642–648, 2006. View at Publisher · View at Google Scholar · View at PubMed
  9. J. Ratajczak, K. Miekus, M. Kucia et al., “Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery,” Leukemia, vol. 20, no. 5, pp. 847–856, 2006. View at Publisher · View at Google Scholar · View at PubMed
  10. H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee, and J. O. Lötvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at PubMed
  11. J. Skog, T. Würdinger, S. van Rijn et al., “Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers,” Nature Cell Biology, vol. 10, no. 12, pp. 1470–1476, 2008. View at Publisher · View at Google Scholar · View at PubMed
  12. A. Aharon, T. Tamari, and B. Brenner, “Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells,” Thrombosis and Haemostasis, vol. 100, no. 5, pp. 878–885, 2008. View at Publisher · View at Google Scholar
  13. M. H. Gambim, A. de Oliveira do Carmo, L. Marti, S. Veríssimo-Filho, L. R. Lopes, and M. Janiszewski, “Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction,” Critical Care, vol. 11, no. 5, article R107, 2007. View at Publisher · View at Google Scholar · View at PubMed
  14. K. Al-Nedawi, J. Szemraj, and C. S. Cierniewski, “Mast cell-derived exosomes activate endothelial cells to secrete plasminogen activator inhibitor type 1,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 8, pp. 1744–1749, 2005. View at Publisher · View at Google Scholar · View at PubMed
  15. L. Burnier, P. Fontana, B. R. Kwak, and A. Angelillo-Scherrer , “Cell-derived microparticles in haemostasis and vascular medicine,” Thrombosis and Haemostasis, vol. 101, no. 3, pp. 439–451, 2009. View at Publisher · View at Google Scholar
  16. I. Bachy, R. Kozyraki, and M. Wassef, “The particles of the embryonic cerebrospinal fluid: how could they influence brain development?” Brain Research Bulletin, vol. 75, no. 2–4, pp. 289–294, 2008. View at Publisher · View at Google Scholar · View at PubMed
  17. L. J. Vella, D. L. Greenwood, R. Cappai, J.-P. Scheerlinck, and A. F. Hill, “Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid,” Veterinary Immunology and Immunopathology, vol. 124, no. 3-4, pp. 385–393, 2008. View at Publisher · View at Google Scholar · View at PubMed
  18. J. P. Cogswell, J. Ward, I. A. Taylor et al., “Identification of miRNA changes in Alzheimer's disease brain and CSF yields putative biomarkers and insights into disease pathways,” Journal of Alzheimer's Disease, vol. 14, no. 1, pp. 27–41, 2008. View at Google Scholar
  19. A. Vasudevan, J. E. Long, J. E. Crandall, J. L. Rubenstein, and P. G. Bhide, “Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain,” Nature Neuroscience, vol. 11, no. 4, pp. 429–439, 2008. View at Publisher · View at Google Scholar · View at PubMed
  20. A. Javaherian and A. Kriegstein, “A stem cell niche for intermediate progenitor cells of the embryonic cortex,” Cerebral Cortex, vol. 19, supplement 1, pp. i70–i77, 2009. View at Publisher · View at Google Scholar · View at PubMed
  21. S. Guo and E. H. Lo, “Dysfunctional cell-cell signaling in the neurovascular unit as a paradigm for central nervous system disease,” Stroke, vol. 40, no. 3, supplement 1, pp. S4–S7, 2009. View at Publisher · View at Google Scholar · View at PubMed
  22. W. Risau, S. Esser, and B. Engelhardt, “Differentiation of blood-brain barrier endothelial cells,” Pathologie Biologie, vol. 46, no. 3, pp. 171–175, 1998. View at Google Scholar
  23. J. Ekstrand, J. Hellsten, and A. Tingström, “Environmental enrichment, exercise and corticosterone affect endothelial cell proliferation in adult rat hippocampus and prefrontal cortex,” Neuroscience Letters, vol. 442, no. 3, pp. 203–207, 2008. View at Publisher · View at Google Scholar · View at PubMed
  24. S. S. Chim, T. K. Shing, E. C. Hung et al., “Detection and characterization of placental microRNAs in maternal plasma,” Clinical Chemistry, vol. 54, no. 3, pp. 482–490, 2008. View at Publisher · View at Google Scholar · View at PubMed
  25. P. S. Mitchell, R. K. Parkin, E. M. Kroh et al., “Circulating microRNAs as stable blood-based markers for cancer detection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10513–10518, 2008. View at Publisher · View at Google Scholar · View at PubMed
  26. C. H. Lawrie, S. Gal, H. M. Dunlop et al., “Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma,” British Journal of Haematology, vol. 141, no. 5, pp. 672–675, 2008. View at Publisher · View at Google Scholar · View at PubMed
  27. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at PubMed
  28. S. Gilad, E. Meiri, Y. Yogev et al., “Serum microRNAs are promising novel biomarkers,” PLoS ONE, vol. 3, no. 9, p. e3148, 2008. View at Publisher · View at Google Scholar · View at PubMed
  29. K. E. Resnick, H. Alder, J. P. Hagan, D. L. Richardson, C. M. Croce, and D. E. Cohn, “The detection of differentially expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform,” Gynecologic Oncology, vol. 112, no. 1, pp. 55–59, 2009. View at Publisher · View at Google Scholar · View at PubMed
  30. M. P. Hunter, N. Ismail, X. Zhang et al., “Detection of microRNA expression in human peripheral blood microvesicles,” PLoS ONE, vol. 3, no. 11, p. e3694, 2008. View at Publisher · View at Google Scholar · View at PubMed
  31. D. B. Jackson, “Serum-based microRNAs: are we blinded by potential?” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 1, p. E5, 2009. View at Publisher · View at Google Scholar · View at PubMed
  32. E. K. Ng, W. W. Chong, H. Jin et al., “Differential expression of microRNAs in plasma of colorectal cancer patients: a potential marker for colorectal cancer screening,” Gut.
  33. K. Wang, S. Zhang, B. Marzolf et al., “Circulating microRNAs, potential biomarkers for drug-induced liver injury,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 11, pp. 4402–4407, 2009. View at Publisher · View at Google Scholar · View at PubMed
  34. R. E. Watson, J. M. DeSesso, M. E. Hurtt, and G. D. Cappon, “Postnatal growth and morphological development of the brain: a species comparison,” Birth Defects Research Part B, vol. 77, no. 5, pp. 471–484, 2006. View at Publisher · View at Google Scholar · View at PubMed
  35. A. K. Johnson and P. M. Gross, “Sensory circumventricular organs and brain homeostatic pathways,” FASEB Journal, vol. 7, no. 8, pp. 678–686, 1993. View at Google Scholar
  36. A. Louissaint Jr., S. Rao, C. Leventhal, and S. A. Goldman, “Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain,” Neuron, vol. 34, no. 6, pp. 945–960, 2002. View at Publisher · View at Google Scholar
  37. K. Barami, “Relationship of neural stem cells with their vascular niche: implications in the malignant progression of gliomas,” Journal of Clinical Neuroscience, vol. 15, no. 11, pp. 1193–1197, 2008. View at Publisher · View at Google Scholar · View at PubMed