Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2009, Article ID 725310, 6 pages
http://dx.doi.org/10.1155/2009/725310
Hypothesis

Omega-3 Polyunsaturated Fatty Acids (n-3 PUFAs) in Cardiovascular Diseases (CVDs) and Depression: The Missing Link?

1Department of Psychiatry, China Medical University Hospital, Taichung 40447, Taiwan
2Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung 40447, Taiwan

Received 29 April 2009; Revised 29 June 2009; Accepted 15 July 2009

Academic Editor: Hari Manev

Copyright © 2009 Jane Pei-Chen Chang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. Glassman, J. T. Bigger, and M. Gaffney, “Heart rate variability in acute coronary syndrome patients with major depression, influence of sertraline and mood improvement,” Archives of General Psychiatry, vol. 64, p. 9, 2007. View at Google Scholar
  2. D. L. Evans, D. S. Charney, L. Lewis et al., “Mood disorders in the medically ill: scientific review and recommendations,” Biological Psychiatry, vol. 58, no. 3, pp. 175–189, 2005. View at Publisher · View at Google Scholar · View at PubMed
  3. W. Jiang, A. Glassman, R. Krishnan, C. M. O'Connor, and R. M. Califf, “Depression and ischemic heart disease: what have we learned so far and what must we do in the future?” American Heart Journal, vol. 150, pp. 54–78, 2005. View at Google Scholar
  4. W. W. Eaton, J. Fogel, and H. K. Armenian, “The consequences of psychopathology in the Baltimore epidemiologic catchment area follow-up,” in Medical and Psychiatric Comorbidity over the Life Span, W. W. Eaton, Ed., chapter 2, pp. 21–38, American Psychiatric, Washington, DC, USA, 2006. View at Google Scholar
  5. A. H. Glassman, J. T. Bigger, M. Gaffney et al., “Onset of major depression associated with acute coronary syndromes: relationship of onset, major depressive disorder history, and episode severity to sertraline benefit,” Archives of General Psychiatry, vol. 63, no. 3, pp. 283–288, 2006. View at Publisher · View at Google Scholar · View at PubMed
  6. G. Lippi, M. Montagnana, E. Favaloro, and M. Franchini, “Mental depression and cardiovascular disease: a multifaceted, bidirectional association,” Seminars in Thrombosis and Hemostasis, vol. 35, no. 3, pp. 325–336, 2009. View at Publisher · View at Google Scholar · View at PubMed
  7. M. E. Gerritsen, “Physiological and pathophysiological roles of eicosanoids in the microcirculation,” Cardiovascular Research, vol. 32, no. 4, pp. 720–732, 1996. View at Publisher · View at Google Scholar
  8. U. N. Das, “Essential fatty acids: biochemistry, physiology and pathology,” Biotechnology Journal, vol. 1, no. 4, pp. 420–439, 2006. View at Google Scholar
  9. U. N. Das, “Is depression a low-grade systemic inflammatory condition,” American Journal of Clinical Nutrition, vol. 85, no. 6, pp. 1665–1666, 2007. View at Google Scholar
  10. D. L. Musselman, “Medical illness and depression: a delicate interplay between biology and brain,” in Proceedings of the 156th Annual Meeting of the American Psycahitric Association, San Francisco, Calif, USA, May 2003, abstract no. S24B.
  11. D. L. Musselman, D. L. Evans, and C. B. Nemeroff, “The relationship of depression to cardiovascular disease,” Archives of General Psychiatry, vol. 55, no. 7, pp. 580–592, 1998. View at Publisher · View at Google Scholar
  12. C. B. Nemeroff, E. Widerlov, G. Bissette et al., “Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients,” Science, vol. 226, no. 4680, pp. 1342–1344, 1984. View at Google Scholar
  13. F. C. Raadsheer, J. J. van Heerikhuize, P. J. Lucassen et al., “Increased numbers of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients,” Neuroendocrinology, vol. 60, no. 4, pp. 436–444, 1994. View at Google Scholar
  14. H. Murck, C. Song, D. Horrobin, and M. Uhr, “Ethyl-eicosapentaenoate and dexamethasone resistance in therapy-refractory depression,” International Journal of Neuropsychopharmacology, vol. 7, no. 3, pp. 341–349, 2004. View at Publisher · View at Google Scholar · View at PubMed
  15. C. M. Pariante, “The glucocorticoid receptor: part of the solution or part of the problem?” Journal of Psychopharmacology, vol. 20, pp. 79–84, 2006. View at Publisher · View at Google Scholar · View at PubMed
  16. R. G. Troxler, E. A. Sprague, R. A. Albanese, R. Fuchs, and A. J. Thompson, “The association of elevated plasma cortisol and early atherosclerosis as demonstrated by coronary angiography,” Atherosclerosis, vol. 26, no. 2, pp. 151–162, 1977. View at Google Scholar
  17. J. R. Hibbeln, L. R. Nieminen, T. L. Blasbalg, J. A. Riggs, and W. E. Lands, “Healthy intakes of n-3 and n-6 fatty acids: estimations considering worldwide diversity,” American Journal of Clinical Nutrition, vol. 83, no. 6, pp. 1483S–1493S, 2006. View at Google Scholar
  18. M. Peet, B. Murphy, J. Shay, and D. Horrobin, “Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients,” Biological Psychiatry, vol. 43, no. 5, pp. 315–319, 1998. View at Publisher · View at Google Scholar
  19. Y. Mitsuhiro, O. Hideki, M. Masunari et al., “Effects of eicosapentaenoic acid on major coronary events in hypercholesterolameic patients(JELIS): a randomised open-label, blinded endpoint analysis,” The Lancet, vol. 369, pp. 1090–1098, 2007. View at Google Scholar
  20. R. Edwards, M. Peet, J. Shay, and D. Horrobin, “Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients,” Journal of Affective Disorders, vol. 48, no. 2-3, pp. 149–155, 1998. View at Publisher · View at Google Scholar
  21. W. S. Harris, B. Assaad, and W. C. Poston, “Tissue omega-6/omega-3 fatty acid ratio and risk for coronary artery disease,” American Journal of Cardiology, vol. 98, no. 4, supplement 1, pp. 19–26, 2006. View at Publisher · View at Google Scholar · View at PubMed
  22. P. Y. Lin and K. P. Su, “A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids,” Journal of Clinical Psychiatry, vol. 68, no. 7, pp. 1056–1061, 2007. View at Google Scholar
  23. J. X. Kang and A. Leaf, “Antiarrhythmic effects of polyunsaturated fatty acids. Recent studies,” Circulation, vol. 94, no. 7, pp. 1774–1780, 1996. View at Google Scholar
  24. S. P. Whelton, J. He, P. K. Whelton, and P. Muntner, “Meta-analysis of observational studies on fish intake and coronary heart disease,” American Journal of Cardiology, vol. 93, no. 9, pp. 1119–1123, 2004. View at Publisher · View at Google Scholar · View at PubMed
  25. C. M. Albert, H. Campos, M. J. Stampfer et al., “Blood levels of long-chain n-3 fatty acids and the risk of sudden death,” The New England Journal of Medicine, vol. 346, no. 15, pp. 1113–1118, 2002. View at Publisher · View at Google Scholar · View at PubMed
  26. J. S. Rao, H. J. Lee, S. I. Rapoport, and R. P. Bazinet, “Mode of action of mood stabilizers: is the arachidonic acid cascade a common target?” Molecular Psychiatry, vol. 13, pp. 585–596, 2008. View at Google Scholar
  27. M. Strokin, M. Sergeeva, and G. Reiser, “Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+,” British Journal of Pharmacology, vol. 139, no. 5, pp. 1014–1022, 2003. View at Publisher · View at Google Scholar · View at PubMed
  28. M. Strokin, M. Sergeeva, and G. Reiser, “Role of Ca2+-independent phospholipase A2 and n-3 polyunsaturated fatty acid docosahexaenoic acid in prostanoid production in brain: perspectives for protection in neuroinflammation,” International Journal of Developmental Neuroscience, vol. 22, no. 7, pp. 551–557, 2004. View at Google Scholar
  29. P. C. Kam and A. U. See, “Cyclo-oxygenase isoenzymes: physiological and pharmacological role,” Anaesthesia, vol. 55, no. 5, pp. 442–449, 2000. View at Google Scholar
  30. M. Noponen, M. Sanfilipo, K. Samanich et al., “Elevated PLA2 activity in schizophrenics and other psychiatric patients,” Biological Psychiatry, vol. 34, no. 9, pp. 641–649, 1993. View at Publisher · View at Google Scholar
  31. A. Tay, J. S. Simon, J. Squire, K. Hamel, H. J. Jacob, and K. Skorecki, “Cytosolic phospholipase A2 gene in human and rat: chromosomal localization and polymorphic markers,” Genomics, vol. 26, no. 1, pp. 138–141, 1995. View at Publisher · View at Google Scholar
  32. C. U. Pae, H. S. Yu, J. J. Kim et al., “BanI polymorphism of the cytosolic phospholipase A2 gene and mood disorders in the Korean population,” Neuropsychobiology, vol. 49, no. 4, pp. 185–188, 2004. View at Publisher · View at Google Scholar · View at PubMed
  33. K. P. Su, C. Y. Peng, J. C. Cheng, and C. M. Pariante, “Polymorphisms in cytosolic phopholipase A2 and cyclooxygenase 2 genes and risk of interferon induced depression,” European Neuropsychopharmacology, vol. 17, pp. S334–S335, 2007. View at Google Scholar
  34. K. P. Su, “Mind-body interface: the role of n-3 fatty acids in psychoneruoimmunology, somatic presentation, and medical illness comorbidity of depression,” The Asia Pacific Journal of Clinical Nutrition, vol. 17, pp. 147–153, 2008. View at Google Scholar
  35. A. Papafili, M. R. Hill, D. J. Brull et al., “Common promoter variant in cyclooxygenase-2 represses gene expression: eidence of role in acute-phase inflammatory response,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 10, pp. 1631–1636, 2002. View at Publisher · View at Google Scholar
  36. F. Cipollone, E. Toniato, S. Martinotti et al., “A polymorphism in the cyclooxygenase 2 gene as an inherited protective factor against myocardial infarction and stroke,” Journal of the American Medical Association, vol. 291, no. 18, pp. 2221–2228, 2004. View at Publisher · View at Google Scholar · View at PubMed
  37. D. Colaizzo, L. Fofi, G. Tiscia et al., “The COX-2 G/C-765 polymorphism may modulate the occurrence of cerebrovascular ischemia,” Blood Coagulation and Fibrinolysis, vol. 17, no. 2, pp. 93–96, 2006. View at Publisher · View at Google Scholar · View at PubMed
  38. J. Orbe, O. Beloqui, J. A. Rodriguez, M. S. Belzunce, C. Roncal, and J. A. Paramo, “Protective effect of the G-765C COX-2 polymorphism on subclinical atherosclerosis and inflammatory markers in asymptomatic subjects with cardiovascular risk factors,” Clinica Chimica Acta, vol. 368, no. 1-2, pp. 138–143, 2006. View at Publisher · View at Google Scholar · View at PubMed
  39. K. H. Huuskonen, A. K. Tarja, M. T. Minna et al., “Research article: COX-2 gene promoter polymorphism and coronary artery disease in middle-aged men: the Helsinki sudden death study,” Mediators of Inflammation, vol. 2008, pp. 1–5, 2008. View at Google Scholar
  40. K. P. Su, “The biological mechanism of antidepressant effect of omega-3 fatty acids: how does fish oil acts as a “mind-body interface?”,” NeuroSignals, vol. 17, no. 2, pp. 144–152, 2009. View at Google Scholar
  41. T. Wu, S. J. Levine, M. G. Lawrence, C. Logun, C. W. Angus, and J. H. Shelhamer, “Interferon-γ induces the synthesis and activation of cytosolic phospholipase A2,” The Journal of Clinical Investigation, vol. 93, no. 2, pp. 571–577, 1994. View at Google Scholar
  42. C. Song, X. Li, Z. Kang, and Y. Kadotomi, “Omega-3 fatty acid ethyl-eicosapentaenoate attenuates IL-1beta-induced changes in dopamine and metabolites in the shell of the nucleus accumbens: involved with PLA2 activity and corticosterone secretion,” Neuropsychopharmacology, vol. 32, no. 3, pp. 736–744, 2007. View at Publisher · View at Google Scholar · View at PubMed
  43. J. R. Hibbeln, G. Bissette, J. C. Umhau, and D. T. George, “Omega-3 status and cerebrospinal fluid corticotrophin releasing hormone in perpetrators of domestic violence,” Biological Psychiatry, vol. 56, no. 11, pp. 895–897, 2004. View at Publisher · View at Google Scholar · View at PubMed
  44. T. Takeuchi, M. Iwanaga, and E. Harada, “Possible regulatory mechanism of DHA-induced anti-stress reaction in rats,” Brain Research, vol. 964, no. 1, pp. 136–143, 2003. View at Publisher · View at Google Scholar
  45. T. Hamazaki, S. Sawazaki, M. Itomura et al., “The effect of docosahexaenoic acid on aggression in young adults: a placebo-controlled double-blind study,” The Journal of Clinical Investigation, vol. 97, no. 4, pp. 1129–1133, 1996. View at Google Scholar
  46. J. Bradbury, S. P. Myers, and C. Oliver, “An adaptogenic role for omega-3 fatty acids in stress; a randomized placebo controlled double blind intervention study (pilot),” Nutrition Journal, vol. 3, p. 20, 2004. View at Google Scholar
  47. L. R. G. Nieminen, K. K. Makino, N. Mehta, M. Virkkunen, H. Y. Kim, and J. R. Hibbeln, “Relationship between omega-3 fatty acids and plasma neuroactive steroids in alcoholism, depression and controls,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 75, no. 4-5, pp. 309–314, 2006. View at Publisher · View at Google Scholar · View at PubMed
  48. R. Marchioli, F. Barzi, E. Bomba et al., “Early protection against sudden death by n-3 polyunsaturated fatty acids after myocardial infarction: time-course analysis of the results of the gruppo italiano per lo studio della sopravvivenza nell'Infarto miocardico (GISSI)-Prevenzione,” Circulation, vol. 105, no. 16, pp. 1897–1903, 2002. View at Publisher · View at Google Scholar
  49. M. L. Burr, A. M. Fehily, J. F. Gilbert et al., “Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART),” The Lancet, vol. 2, pp. 757–761, 1989. View at Google Scholar
  50. K. He, E. B. Rimm, A. Merchant et al., “Fish consumption and risk of stroke in men,” Journal of the American Medical Association, vol. 288, no. 24, pp. 3130–3136, 2002. View at Publisher · View at Google Scholar
  51. C. J. Murray and A. D. Lopez, The Global Burden of Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries, and Risk Factors in 1990 and Projected to 2020, Harvard University Press, Cambridge, Mass, USA, 1996.