Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2010 (2010), Article ID 501349, 7 pages
http://dx.doi.org/10.1155/2010/501349
Clinical Study

Increased Serum PAI-1 Levels in Subjects with Metabolic Syndrome and Long-Term Adverse Mental Symptoms: A Population-Based Study

1Division of Physiology, Institute of Biomedicine, Biocenter Oulu, University of Oulu, 90014 Oulu, Finland
2Department of Psychiatry, Institute of Clinical Medicine, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
3Kuopio Psychiatric Center, P. O. Box 1777, 70211 Kuopio, Finland
4Department of Medicine, Institute of Clinical Medicine, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
5Department of Psychiatry, University of Oulu & Lapland Hospital District, 97140 Rovaniemi, Finland

Received 9 September 2009; Revised 30 November 2009; Accepted 11 January 2010

Academic Editor: Paul Mackin

Copyright © 2010 Anne Huotari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Viinamäki, T. Heiskanen, S. M. Lehto et al., “Association of depressive symptoms and metabolic syndrome in men,” Acta Psychiatrica Scandinavica, vol. 120, pp. 23–29, 2009. View at Google Scholar
  2. A. H. Glassman and P. A. Shapiro, “Depression and the course of coronary artery disease,” American Journal of Psychiatry, vol. 155, no. 1, pp. 4–11, 1998. View at Google Scholar · View at Scopus
  3. K. Räikkönen, K. A. Matthews, and L. H. Kuller, “The relationship between psychological risk attributes and the metabolic syndrome in healthy women: antecedent or consequence?” Metabolism: Clinical and Experimental, vol. 51, no. 12, pp. 1573–1577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. R. M. Carney, K. E. Freedland, G. E. Miller, and A. S. Jaffe, “Depression as a risk factor for cardiac mortality and morbidity: a review of potential mechanisms,” Journal of Psychosomatic Research, vol. 53, no. 4, pp. 897–902, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. A. H. Berg and P. E. Scherer, “Adipose tissue, inflammation, and cardiovascular disease,” Circulation Research, vol. 96, no. 9, pp. 939–949, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S.-J. Tsai, “The possible role of tissue-type plasminogen activator and the plasminogen system in the pathogenesis of major depression,” Medical Hypotheses, vol. 66, no. 2, pp. 319–322, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Koponen, J. Jokelainen, S. Keinanen-Kiukaanniemi, E. Kumpusalo, and M. Vanhala, “Metabolic syndrome predisposes to depressive symptoms: a population-based 7-year follow-up study,” Journal of Clinical Psychiatry, vol. 69, no. 2, pp. 178–182, 2008. View at Google Scholar · View at Scopus
  8. B. R. Binder, G. Christ, F. Gruber et al., “Plasminogen activator inhibitor 1: physiological and pathophysiological roles,” News in Physiological Sciences, vol. 17, no. 2, pp. 56–61, 2002. View at Google Scholar · View at Scopus
  9. P. Eriksson, S. Reynisdottir, F. Lonnqvist, V. Stemme, A. Hamsten, and P. Arner, “Adipose tissue secretion of plasminogen activator inhibitor-1 in non-obese and obese individuals,” Diabetologia, vol. 41, no. 1, pp. 65–71, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Kooistra, E. D. Sprengers, and V. W. M. van Hinsbergh, “Rapid inactivation of the plasminogen-activator inhibitor upon secretion from cultured human endothelial cells,” Biochemical Journal, vol. 239, no. 3, pp. 497–503, 1986. View at Google Scholar · View at Scopus
  11. D. E. Vaughan, “PAI-1 and atherothrombosis,” Journal of Thrombosis and Haemostasis, vol. 3, no. 8, pp. 1879–1883, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. S. Rao, M. Chen, and B. W. Festoff, “Plasminogen activator inhibitor 1, the primary regulator of fibrinolysis, in normal human cerebrospinal fluid,” Journal of Neuroscience Research, vol. 34, no. 3, pp. 340–345, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Benchenane, V. Berezowski, C. Ali et al., “Tissue-type plasminogen activator crosses the intact blood-brain barrier by low-density lipoprotein receptor-related protein-mediated transcytosis,” Circulation, vol. 111, no. 17, pp. 2241–2249, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. P. Melchor and S. Strickland, “Tissue plasminogen activator in central nervous system physiology and pathology,” Thrombosis and Haemostasis, vol. 93, no. 4, pp. 655–660, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Yepes, M. Sandkvist, E. G. Moore, T. H. Bugge, D. K. Strickland, and D. A. Lawrence, “Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein,” Journal of Clinical Investigation, vol. 112, no. 10, pp. 1533–1540, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Hino, H. Akiyama, E. Iseki et al., “Immunohistochemical localization of plasminogen activator inhibitor-1 in rat and human brain tissues,” Neuroscience Letters, vol. 297, no. 2, pp. 105–108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Eskandari, S. Mistry, P. E. Martinez et al., “Younger, premenopausal women with major depressive disorder have more abdominal fat and increased serum levels of prothrombotic factors: implications for greater cardiovascular risk,” Metabolism: Clinical and Experimental, vol. 54, no. 7, pp. 918–924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Lahlou-Laforet, M. Alhenc-Gelas, M. Pornin et al., “Relation of depressive mood to plasminogen activator inhibitor, tissue plasminogen activator, and fibrinogen levels in patients with versus without coronary heart disease,” American Journal of Cardiology, vol. 97, no. 9, pp. 1287–1291, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Lehto, L. Niskanen, K.-H. Herzig et al., “Serum chemokine levels in major depressive disorder,” Psychoneuroendocrinology, vol. 35, no. 2, pp. 226–232, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. M. Lehto, A. Huotari, L. Niskanen et al., “Serum adiponectin and resistin levels in major depressive disorder,” Acta Psychiatrica Scandinavica, vol. 121, no. 3, pp. 209–215, 2010. View at Publisher · View at Google Scholar
  21. A. T. Beck, C. H. Ward, M. Mendelson, J. Mock, and J. Erbaugh, “An inventory for measuring depression,” Archives of General Psychiatry, vol. 4, pp. 561–571, 1961. View at Google Scholar · View at Scopus
  22. M. Joukamaa, J. Miettunen, P. Kokkonen et al., “Psychometric properties of the Finnish 20-item Toronto Alexithymia Scale,” Nordic Journal of Psychiatry, vol. 55, no. 2, pp. 123–127, 2001. View at Google Scholar · View at Scopus
  23. H. Koivumaa-Honkanen, R. Honkanen, H. Viinamäki, K. Heikkilä, J. Kaprio, and M. Koskenvuo, “Self-reported life satisfaction and 20-year mortality in healthy finnish adults,” American Journal of Epidemiology, vol. 152, no. 10, pp. 983–991, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Yamamoto, K. Takeshita, T. Kojima, J. Takamatsu, and H. Saito, “Aging and plasminogen activator inhibitor-1 (PAI-1) regulation: implication in the pathogenesis of thrombotic disorders in the elderly,” Cardiovascular Research, vol. 66, no. 2, pp. 276–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. K. A. Matthews, L. L. Schott, J. Bromberger, J. Cyranowski, S. A. Everson-Rose, and M. F. Sowers, “Associations between depressive symptoms and inflammatory/hemostatic markers in women during the menopausal transition,” Psychosomatic Medicine, vol. 69, no. 2, pp. 124–130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. R. von Kanel, F. E. Maly, K. Frey, and J. E. Fischer, “Contribution of the type 1 plasminogen activator inhibitor 4G/5G gene polymorphism to impaired fibrinolysis in vital exhaustion,” Italian Heart Journal, vol. 4, no. 11, pp. 791–796, 2003. View at Google Scholar · View at Scopus
  27. W. J. Kop, K. Hamulyak, C. Pernot, and A. Appels, “Relationship of blood coagulation and fibrinolysis to vital exhaustion,” Psychosomatic Medicine, vol. 60, no. 3, pp. 352–358, 1998. View at Google Scholar · View at Scopus
  28. K. Raikkonen, R. Lassila, L. Keltikangas-Jarvinen, and A. Hautanen, “Association of chronic stress with plasminogen activator inhibitor-1 in healthy middle-aged men,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 16, no. 3, pp. 363–367, 1996. View at Google Scholar · View at Scopus
  29. F. Geiser, C. Meier, I. Wegener et al., “Association between anxiety and factors of coagulation and fibrinolysis,” Psychotherapy and Psychosomatics, vol. 77, no. 6, pp. 377–383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S.-J. Tsai, C.-J. Hong, Y.-J. Liou, Y. W.-Y. Yu, and T.-J. Chen, “Plasminogen activator inhibitor-1 gene is associated with major depression and antidepressant treatment response,” Pharmacogenetics and Genomics, vol. 18, no. 10, pp. 869–875, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S.-J. Hou, F.-C. Yen, and S.-J. Tsai, “Is dysfunction of the tissue plasminogen activator (tPA)-plasmin pathway a link between major depression and cardiovascular disease?” Medical Hypotheses, vol. 72, no. 2, pp. 166–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. H. Pietraszek, Y. Takada, M. Nishimoto, K. Ohara, K. Ohara, and A. Takada, “Fibrinolytic activity in depression and neurosis,” Thrombosis Research, vol. 63, no. 6, pp. 661–666, 1991. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Monteleone, C. Serritella, V. Martiadis, and M. Maj, “Decreased levels of serum brain-derived neurotrophic factor in both depressed and euthymic patients with unipolar depression and in euthymic patients with bipolar I and II disorders,” Bipolar Disorders, vol. 10, no. 1, pp. 95–100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. F. O. T. Akenami, M. Koskiniemi, M. Farkkila, and A. Vaheri, “Cerebrospinal fluid plasminogen activator inhibitor-1 in patients with neurological disease,” Journal of Clinical Pathology, vol. 50, no. 2, pp. 157–160, 1997. View at Google Scholar · View at Scopus
  35. L. Wang, J. Rockwood, D. Zak, S. Devaraj, and I. Jialal, “Simvastatin reduces circulating plasminogen activator inhibitor 1 activity in volunteers with the metabolic syndrome,” Metabolic Syndrome and Related Disorders, vol. 6, no. 2, pp. 149–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. H.-Y. Qu, Y.-W. Xiao, G.-H. Jiang, Z.-Y. Wang, Y. Zhang, and M. Zhang, “Effect of atorvastatin versus rosuvastatin on levels of serum lipids, inflammatory markers and adiponectin in patients with hypercholesterolemia,” Pharmaceutical Research, vol. 26, no. 4, pp. 958–964, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Young-Xu, K. A. Chan, J. K. Liao, S. Ravid, and C. M. Blatt, “Long-term statin use and psychological well-being,” Journal of the American College of Cardiology, vol. 42, no. 4, pp. 690–697, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. I. Mertens, A. Verrijken, J. J. Michiels, M. van der Planken, J. B. Ruige, and L. F. Van Gaal, “Among inflammation and coagulation markers, PAI-1 is a true component of the metabolic syndrome,” International Journal of Obesity, vol. 30, no. 8, pp. 1308–1314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. F. W. Asselbergs, S. M. Williams, P. R. Hebert et al., “Gender-specific correlations of plasminogen activator inhibitor-1 and tissue plasminogen activator levels with cardiovascular disease-related traits,” Journal of Thrombosis and Haemostasis, vol. 5, no. 2, pp. 313–320, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. O. C. E. Gebara, M. A. Mittleman, P. Sutherland et al., “Association between increased estrogen status and increased fibrinolytic potential in the framingham offspring study,” Circulation, vol. 91, no. 7, pp. 1952–1958, 1995. View at Google Scholar · View at Scopus
  41. F. Linkov, Y. Gu, A. A. Arslan et al., “Reliability of tumor markers, chemokines, and metastasis-related molecules in serum,” European Cytokine Network, vol. 20, no. 1, pp. 21–26, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. R. Merikangas, H. Zhang, S. Avenevoli, S. Acharyya, M. Neuenschwander, and J. Angst, “Longitudinal trajectories of depression and anxiety in a prospective community study: the Zurich Cohort Study,” Archives of General Psychiatry, vol. 60, no. 10, pp. 993–1000, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Tuttolomondo, A. Pinto, S. Corrao et al., “Immuno-inflammatory and thrombotic/fibrinolytic variables associated with acute ischemic stroke diagnosis,” Atherosclerosis, vol. 203, no. 2, pp. 503–508, 2009. View at Publisher · View at Google Scholar · View at Scopus