Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2010, Article ID 780645, 7 pages
Review Article

Mood Disorders Are Glial Disorders: Evidence from In Vivo Studies

1Department of Psychiatry, Queen Elizabeth Hospital, 10362 Berlin, Germany
2Department of Molecular Cell Physiology, Institute of Molecular Pharmacology, 10125 Berlin, Germany
3Day Clinic of Cognitive Neurology, University of Leipzig, 04103 Leipzig, Germany
4Department of Cognitive Neurology & Nuclear Magnetic Resonance Unit, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
5Clinic for Pediatric Cardiology, University Clinic of Saarland, 66421 Homburg/Saar, Germany
6Department of Psychiatry, University of Magdeburg, 39120 Magdeburg, Germany

Received 18 February 2010; Accepted 30 March 2010

Academic Editor: Claus W. Heizmann

Copyright © 2010 Matthias L. Schroeter et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


It has recently been suggested that mood disorders can be characterized by glial pathology as indicated by histopathological postmortem findings. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. This protein might act as a growth and differentiation factor. It is located in, and may actively be released by, astro- and oligodendrocytes. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Successful antidepressive treatment reduces S100B in major depression whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered. By indicating glial alterations without neuronal changes, serum S100B studies confirm specific glial pathology in mood disorders in vivo. S100B can be regarded as a potential diagnostic biomarker for mood disorders and as a biomarker for successful antidepressive treatment.