Table of Contents Author Guidelines Submit a Manuscript
Cardiovascular Psychiatry and Neurology
Volume 2012 (2012), Article ID 367516, 15 pages
http://dx.doi.org/10.1155/2012/367516
Review Article

Cardiovascular Risk Factors Promote Brain Hypoperfusion Leading to Cognitive Decline and Dementia

Department of Psychology, University of TX at Austin, Austin, TX 78712, USA

Received 1 August 2012; Accepted 30 October 2012

Academic Editor: Christian Humpel

Copyright © 2012 Jack C. de la Torre. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Ebbell, The Papyrus Ebers. The Greatest Egyptian Medical Document, Levin & Munksgaard, Copenhagen, Denmark, 1937.
  2. “Cardiogenic dementia,” The Lancet, vol. 1, no. 8001, pp. 27–28, 1977.
  3. J. de la Torre, “Basics of Alzheimer's disease prevention,” Journal of Alzheimer's Disease, vol. 20, no. 3, pp. 687–688, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Bergmann and M. Sano, “Cardiac risk factors and potential treatments in Alzheimer's disease,” Neurological Research, vol. 28, no. 6, pp. 595–604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. K. David and R. B. Taylor, Taylor’s Cardiovascular Diseases: A Handbook, Springer, 2004.
  6. R. J. M. Lane, “‘Cardiogenic dementia’ revisited,” Journal of the Royal Society of Medicine, vol. 84, no. 10, pp. 577–579, 1991. View at Google Scholar · View at Scopus
  7. H. Koide, S. Kobayashi, M. Kitani, T. Tsunematsu, and Y. Nakazawa, “Improvement of cerebral blood flow and cognitive function following pacemaker implantation in patients with bradycardia,” Gerontology, vol. 40, no. 5, pp. 279–285, 1994. View at Google Scholar · View at Scopus
  8. S. Duschek, E. Matthias, and R. Schandry, “Essential hypotension is accompanied by deficits in attention and working memory,” Behavioral Medicine, vol. 30, no. 4, pp. 149–158, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Qiu, E. von Strauss, J. Fastbom, B. Winblad, and L. Fratiglioni, “Low blood pressure and risk of dementia in the Kungsholmen project: a 6-year follow-up study,” Archives of Neurology, vol. 60, no. 2, pp. 223–228, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. S. R. Waldstein, P. P. Giggey, J. F. Thayer, and A. B. Zonderman, “Nonlinear relations of blood pressure to cognitive function: the Baltimore longitudinal study of aging,” Hypertension, vol. 45, no. 3, pp. 374–379, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. L. E. Hebert, P. A. Scherr, D. A. Bennett et al., “Blood pressure and late-life cognitive function change: a biracial longitudinal population study,” Neurology, vol. 62, no. 11, pp. 2021–2024, 2004. View at Google Scholar · View at Scopus
  12. S. Duschek and R. Schandry, “Reduced brain perfusion and cognitive performance due to constitutional hypotension,” Clinical Autonomic Research, vol. 17, no. 2, pp. 69–76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kennelly and O. Collins, “Walking the cognitive “minefield” between high and low blood pressure,” Journal of Alzheimer's Disease, vol. 32, no. 3, pp. 609–621, 2012. View at Google Scholar
  14. J. Verghese, R. B. Lipton, C. B. Hall, G. Kuslansky, and M. J. Katz, “Low blood pressure and the risk of dementia in very old individuals,” Neurology, vol. 61, no. 12, pp. 1667–1672, 2003. View at Google Scholar · View at Scopus
  15. S. E. Nilsson, S. Read, S. Berg, B. Johansson, A. Melander, and U. Lindblad, “Low systolic blood pressure is associated with impaired cognitive function in the oldest old: longitudinal observations in a population-based sample 80 years and older,” Aging, vol. 19, no. 1, pp. 41–47, 2007. View at Google Scholar · View at Scopus
  16. K. Ide, F. Pott, J. J. Van Lieshout, and N. H. Secher, “Middle cerebral artery blood velocity depends on cardiac output during exercise with a large muscle mass,” Acta Physiologica Scandinavica, vol. 162, no. 1, pp. 13–20, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. J. C. de la Torre, “Cerebral hemodynamics and vascular risk factors: setting the stage for Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 32, no. 3, pp. 553–567, 2012. View at Google Scholar
  18. W. D. Brown and R. S. J. Frackowiak, “Cerebral blood flow and metabolism studies in multi-infarct dementia,” Alzheimer Disease and Associated Disorders, vol. 5, no. 2, pp. 131–143, 1991. View at Google Scholar · View at Scopus
  19. J. C. de la Torre, “Critically attained threshold of cerebral hypoperfusion: the CATCH hypothesis of Alzheimer's pathogenesis,” Neurobiology of Aging, vol. 21, no. 2, pp. 331–342, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. De Leon, L. Mosconi, K. Blennow et al., “Imaging and CSF studies in the preclinical diagnosis of Alzheimer's disease,” Annals of the New York Academy of Sciences, vol. 1097, pp. 114–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Mosconi, S. De Santi, J. Li et al., “Hippocampal hypometabolism predicts cognitive decline from normal aging,” Neurobiology of Aging, vol. 29, no. 5, pp. 676–692, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. L. Leenders, D. Perani, A. A. Lammertsma et al., “Cerebral blood flow, blood volume and oxygen utilization: normal values and effect of age,” Brain, vol. 113, no. 1, pp. 27–47, 1990. View at Google Scholar · View at Scopus
  23. M. Zhao, S. Amin-Hanjani, S. Ruland, A. P. Curcio, L. Ostergren, and F. T. Charbel, “Regional cerebral blood flow using quantitative MR angiography,” American Journal of Neuroradiology, vol. 28, no. 8, pp. 1470–1473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Bentourkia, A. Bol, A. Ivanoiu et al., “Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging,” Journal of the Neurological Sciences, vol. 181, no. 1-2, pp. 19–28, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. L. M. Parkes, W. Rashid, D. T. Chard, and P. S. Tofts, “Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects,” Magnetic Resonance in Medicine, vol. 51, no. 4, pp. 736–743, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Heo, R. S. Prakash, M. W. Voss et al., “Resting hippocampal blood flow, spatial memory and aging,” Brain Research, vol. 1315, pp. 119–127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. de la Torre, “How do heart disease and stroke become risk factors for Alzheimer's disease?” Neurological Research, vol. 28, no. 6, pp. 637–644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Erecińska and I. A. Silver, “ATP and brain function,” Journal of Cerebral Blood Flow and Metabolism, vol. 9, no. 1, pp. 2–19, 1989. View at Google Scholar
  29. D. Gebremedhin, A. R. Lange, T. F. Lowry et al., “Production of 20-HETE and its role in autoregulation of cerebral blood flow,” Circulation Research, vol. 87, no. 1, pp. 60–65, 2000. View at Google Scholar · View at Scopus
  30. M. Silvestrini, F. Vernieri, P. Pasqualetti et al., “Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis,” Journal of the American Medical Association, vol. 283, no. 16, pp. 2122–2127, 2000. View at Google Scholar · View at Scopus
  31. H. Markus and M. Cullinane, “Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion,” Brain, vol. 124, no. 3, pp. 457–467, 2001. View at Google Scholar · View at Scopus
  32. R. P. White, P. Vallance, and H. S. Markus, “Effect of inhibition of nitric oxide synthase on dynamic cerebral autoregulation in humans,” Clinical Science, vol. 99, no. 6, pp. 555–560, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. O. B. Paulson, S. Strandgaard, and L. Edvinsson, “Cerebral autoregulation,” Cerebrovascular and Brain Metabolism Reviews, vol. 2, no. 2, pp. 161–192, 1990. View at Google Scholar · View at Scopus
  34. C. Qiu, B. Winblad, and L. Fratiglioni, “The age-dependent relation of blood pressure to cognitive function and dementia,” The Lancet Neurology, vol. 4, no. 8, pp. 487–499, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. C. A. Feldstein, “Association between chronic blood pressure changes and development of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 32, no. 3, pp. 753–763, 2012. View at Google Scholar
  36. M. Reinhard, M. Roth, T. Müller et al., “Effect of carotid endarterectomy or stenting on impairment of dynamic cerebral autoregulation,” Stroke, vol. 35, no. 6, pp. 1381–1387, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. R. D. Raabe, R. B. Burr, and R. Short, “One-year Cognitive Outcomes Associated with Carotid Artery Stent Placement,” Journal of Vascular and Interventional Radiology, vol. 21, no. 7, pp. 983–988, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Haubrich, A. Kohnke, R. R. Diehl, W. Möller-Hartmann, and C. Klötzsch, “Impact of vertebral artery disease on dynamic cerebral autoregulation,” Acta Neurologica Scandinavica, vol. 112, no. 5, pp. 309–316, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. A. L. Jefferson, D. F. Tate, A. Poppas et al., “Lower cardiac output is associated with greater white matter hyperintensities in older adults with cardiovascular disease,” Journal of the American Geriatrics Society, vol. 55, no. 7, pp. 1044–1048, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. T. C. De Toledo Ferraz Alves and G. F. Busatto, “Regional cerebral blood flow reductions, heart failure and Alzheimer's disease,” Neurological Research, vol. 28, no. 6, pp. 579–587, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. C. de la Torre, “Alzheimer's disease prevalence can be lowered with non-invasive testing,” Journal of Alzheimer's Disease, vol. 14, no. 3, pp. 353–359, 2008. View at Google Scholar · View at Scopus
  42. K. F. Hoth, A. Poppas, D. J. Moser, R. H. Paul, and R. A. Cohen, “Cardiac dysfunction and cognition in older adults with heart failure,” Cognitive and Behavioral Neurology, vol. 21, no. 2, pp. 65–72, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Bogousslavsky and F. Regli, “Unilateral watershed cerebral infarcts,” Neurology, vol. 36, no. 3, pp. 373–377, 1986. View at Google Scholar · View at Scopus
  44. C. F. Bladin and B. R. Chambers, “Clinical features, pathogenesis, and computed tomographic characteristics of internal watershed infarction,” Stroke, vol. 24, no. 12, pp. 1925–1932, 1993. View at Google Scholar · View at Scopus
  45. P. Pullicino, V. Mifsud, E. Wong, S. Graham, I. Ali, and D. Smajlovic, “Hypoperfusion-related cerebral ischemia and cardiac left ventricular systolic dysfunction,” Journal of Stroke and Cerebrovascular Diseases, vol. 10, no. 4, pp. 178–182, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. J. C. de la Torre, “Impaired cerebromicrovascular perfusion: summary of evidence in support of its causality in Alzheimer's disease,” Annals of the New York Academy of Sciences, vol. 924, pp. 136–152, 2000. View at Google Scholar · View at Scopus
  47. C. Geroldi, S. Galluzzi, C. Testa, O. Zanetti, and G. B. Frisoni, “Validation study of a CT-based weighted rating scale for subcortical ischemic vascular disease in patients with mild cognitive deterioration,” European Neurology, vol. 49, no. 4, pp. 193–209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. F. Forette, M. L. Seux, J. A. Staessen et al., “The prevention of dementia with antihypertensive treatment: new evidence from the systolic hypertension in Europe (syst-eur) study,” Archives of Internal Medicine, vol. 162, no. 18, pp. 2046–2052, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Qiu, B. Winblad, A. Marengoni, I. Klarin, J. Fastbom, and L. Fratiglioni, “Heart failure and risk of dementia and Alzheimer disease: a population-based cohort study,” Archives of Internal Medicine, vol. 166, no. 9, pp. 1003–1008, 2006. View at Google Scholar · View at Scopus
  50. C. Bertoni-Freddari, P. Fattoretti, B. Giorgetti, M. Solazzi, M. Balietti, and W. Meier-Ruge, “Role of mitochondrial deterioration in physiological and pathological brain aging,” Gerontology, vol. 50, no. 3, pp. 187–192, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. M. S. Beeri, R. Ravona-Springer, J. M. Silverman, and V. Haroutunian, “The effects of cardiovascular risk factors on cognitive compromise,” Dialogues in Clinical Neuroscience, vol. 11, no. 2, pp. 201–212, 2009. View at Google Scholar · View at Scopus
  52. S. R. Waldstein and C. R. Wendell, “Neurocognitive function and cardiovascular disease,” Journal of Alzheimer's Disease, vol. 20, no. 3, pp. 833–842, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Shah, S. U. Qureshi, M. Johnson, N. Parikh, P. E. Schulz, and M. E. Kunik, “Does use of antihypertensive drugs affect the incidence or progression of dementia? A systematic review,” American Journal Geriatric Pharmacotherapy, vol. 7, no. 5, pp. 250–261, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. M. M. B. Breteler, “Vascular involvement in cognitive decline and dementia. Epidemiologic evidence from the Rotterdam study and the Rotterdam scan study,” Annals of the New York Academy of Sciences, vol. 903, pp. 457–465, 2000. View at Google Scholar · View at Scopus
  55. M. K. Aronson, W. L. Ooi, H. Morgenstern et al., “Women, myocardial infarction, and dementia in the very old,” Neurology, vol. 40, no. 7, pp. 1102–1106, 1990. View at Google Scholar · View at Scopus
  56. M. Dlugaj, M. Gerwig, N. Wege et al., “Elevated levels of high-sensitivity C-reactive protein are associated with mild cognitive impairment and its subtypes: results of a population-based case-control study,” Journal of Alzheimer's Disease, vol. 28, no. 3, pp. 503–514, 2012. View at Publisher · View at Google Scholar
  57. M. C. Polidori, M. Marvardi, A. Cherubini, U. Senin, and P. Mecocci, “Heart disease and vascular risk factors in the cognitively impaired elderly: implications for Alzheimer's dementia,” Aging, vol. 13, no. 3, pp. 231–239, 2001. View at Google Scholar · View at Scopus
  58. D. L. Sparks, “Coronary artery disease, hypertension, ApoE, and cholesterol: a link to Alzheimer's disease?” Annals of the New York Academy of Sciences, vol. 826, pp. 128–146, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Purnell, S. Gao, C. M. Callahan, and H. C. Hendrie, “Cardiovascular risk factors and incident alzheimer disease: a systematic review of the literature,” Alzheimer Disease and Associated Disorders, vol. 23, no. 1, pp. 1–10, 2009. View at Publisher · View at Google Scholar
  60. O. A. Selnes, M. A. Grega, M. M. Bailey et al., “Do management strategies for coronary artery disease influence 6-year cognitive outcomes?” Annals of Thoracic Surgery, vol. 88, no. 2, pp. 445–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Huang, “Mechanisms linking apolipoprotein e isoforms with cardiovascular and neurological diseases,” Current Opinion in Lipidology, vol. 21, no. 4, pp. 337–345, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Belohlavek, P. Jiamsripong, A. M. Calleja et al., “Patients with Alzheimer disease have altered transmitral flow: echocardiographic analysis of the vortex formation time,” Journal of Ultrasound in Medicine, vol. 28, no. 11, pp. 1493–1500, 2009. View at Google Scholar · View at Scopus
  63. B. A. Jerskey, R. A. Cohen, A. L. Jefferson et al., “Sustained attention is associated with left ventricular ejection fraction in older adults with heart disease,” Journal of the International Neuropsychological Society, vol. 15, no. 1, pp. 137–141, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. A. L. Jefferson, A. Poppas, R. H. Paul, and R. A. Cohen, “Systemic hypoperfusion is associated with executive dysfunction in geriatric cardiac patients,” Neurobiology of Aging, vol. 28, no. 3, pp. 477–483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. G. S. Nelson, R. D. Berger, B. J. Fetics et al., “Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block,” Circulation, vol. 102, no. 25, pp. 3053–3059, 2000. View at Google Scholar · View at Scopus
  66. K. F. Hoth, A. Poppas, K. E. Ellison et al., “Link between change in cognition and left ventricular function following cardiac resynchronization therapy,” Journal of Cardiopulmonary Rehabilitation and Prevention, vol. 30, no. 6, pp. 401–408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. N. K. Dixit, L. D. Vazquez, N. J. Cross et al., “Cardiac resynchronization therapy: a pilot study examining cognitive change in patients before and after treatment,” Clinical Cardiology, vol. 33, no. 2, pp. 84–88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. J. R. Festa, X. Jia, K. Cheung et al., “Association of low ejection fraction with impaired verbal memory in older patients with heart failure,” Archives of Neurology, vol. 68, no. 8, pp. 1021–1026, 2011. View at Publisher · View at Google Scholar
  69. D. M. Lloyd-Jones, T. J. Wang, E. P. Leip et al., “Lifetime risk for development of atrial fibrillation: the framingham heart study,” Circulation, vol. 110, no. 9, pp. 1042–1046, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. L. Kilander, B. Andrén, H. Nyman, L. Lind, M. Boberg, and H. Lithell, “Atrial fibrillation is an independent determinant of low cognitive function: a cross-sectional study in elderly men,” Stroke, vol. 29, no. 9, pp. 1816–1820, 1998. View at Google Scholar · View at Scopus
  71. A. Ott, M. M. B. Breteler, M. C. De Bruyne, F. Van Harskamp, D. E. Grobbee, and A. Hofman, “Atrial fibrillation and dementia in a population-based study: the Rotterdam study,” Stroke, vol. 28, no. 2, pp. 316–321, 1997. View at Google Scholar · View at Scopus
  72. T. J. Bunch, J. P. Weiss, B. G. Crandall et al., “Atrial fibrillation is independently associated with senile, vascular, and Alzheimer's dementia,” Heart Rhythm, vol. 7, no. 4, pp. 433–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. P. Forti, F. Maioli, N. Pisacane, E. Rietti, F. Montesi, and G. Ravaglia, “Atrial fibrillation and risk of dementia in non-demented elderly subjects with and without mild cognitive impairment,” Neurological Research, vol. 28, no. 6, pp. 625–629, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. C. R. Gomez, J. R. McLaughlin, P. C. Njemanze, and A. Nashed, “Effect of cardiac dysfunction upon diastolic cerebral blood flow,” Angiology, vol. 43, no. 8, pp. 625–630, 1992. View at Google Scholar · View at Scopus
  75. E. Ettorre, M. Cicerchia, G. De Benedetto et al., “A possible role of atrial fibrillation as a risk factor for dementia,” Archives of Gerontology and Geriatrics, vol. 49, pp. 71–76, 2009. View at Google Scholar · View at Scopus
  76. E. H. Corder, J. F. Ervin, E. Lockhart, M. H. Szymanski, D. E. Schmechel, and C. M. Hulette, “Cardiovascular damage in Alzheimer disease: autopsy findings from the bryan ADRC,” Journal of Biomedicine and Biotechnology, vol. 2005, no. 2, pp. 189–197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. K. D. Boudoulas, E. A. Sparks, S. E. Rittgers, C. F. Wooley, and H. Boudoulas, “Factors determining left atrial kinetic energy in patients with chronic mitral valve disease,” Herz, vol. 28, no. 5, pp. 437–444, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. D. L. Sparks, J. C. Hunsaker, S. W. Scheff, R. J. Kryscio, J. L. Henson, and W. R. Markesbery, “Cortical senile plaques in coronary artery disease, aging and Alzheimer's disease,” Neurobiology of Aging, vol. 11, no. 6, pp. 601–607, 1990. View at Publisher · View at Google Scholar · View at Scopus
  79. I. Skoog, L. A. Andreasson, S. Landahl, and B. Lernfelt, “A population-based study on blood pressure and brain atrophy in 85- year-olds,” Hypertension, vol. 32, no. 3, pp. 404–409, 1998. View at Google Scholar · View at Scopus
  80. Z. Guo, M. Viitanen, L. Fratiglioni, and B. Winblad, “Low blood pressure and dementia in elderly people: the Kungsholmen project,” British Medical Journal, vol. 312, no. 7034, pp. 805–808, 1996. View at Google Scholar · View at Scopus
  81. M. F. Elias, P. A. Wolf, R. B. D'Agostino, J. Cobb, and L. R. White, “Untreated blood pressure level is inversely related to cognitive functioning: the Framingham Study,” American Journal of Epidemiology, vol. 138, no. 6, pp. 353–364, 1993. View at Google Scholar · View at Scopus
  82. U. Kumari and K. Heese, “Cardiovascular dementia—a different perspective,” Open Biochemistry Journal, vol. 4, pp. 29–52, 2010. View at Google Scholar
  83. R. Stewart, Q. L. Xue, K. Masaki et al., “Change in blood pressure and incident dementia: a 32-year prospective study,” Hypertension, vol. 54, no. 2, pp. 233–240, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. I. Skoog, B. Lernfelt, S. Landahl et al., “15-year longitudinal study of blood pressure and dementia,” The Lancet, vol. 347, no. 9009, pp. 1141–1145, 1996. View at Google Scholar · View at Scopus
  85. M. Kivipelto, E. L. Helkala, M. P. Laakso et al., “Midlife vascular risk factors and Alzheimer's disease in later life: longitudinal, population based study,” British Medical Journal, vol. 322, no. 7300, pp. 1447–1451, 2001. View at Google Scholar · View at Scopus
  86. C. Wu, D. Zhou, C. Wen, L. Zhang, P. Como, and Y. Qiao, “Relationship between blood pressure and Alzheimer's disease in Linxian County, China,” Life Sciences, vol. 72, no. 10, pp. 1125–1133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. M. F. O'Rourke and M. E. Safar, “Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy,” Hypertension, vol. 46, no. 1, pp. 200–204, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Tzourio, “Hypertension, cognitive decline, and dementia: an epidemiological perspective,” Dialogues in Clinical Neuroscience, vol. 9, no. 1, pp. 61–70, 2007. View at Google Scholar · View at Scopus
  89. J. C. van Swieten, G. G. Geyskes, M. M. A. Derix et al., “Hypertension in the elderly is associated with white matter lesions and cognitive decline,” Annals of Neurology, vol. 30, no. 6, pp. 825–830, 1991. View at Google Scholar · View at Scopus
  90. N. S. Shah, J.-S. Vidal, K. Masaki et al., “Midlife blood pressure, plasma β-amyloid, and the risk for alzheimer disease: the honolulu asia aging study,” Hypertension, vol. 59, no. 4, pp. 780–786, 2012. View at Publisher · View at Google Scholar
  91. J. C. de la Torre, “Cerebromicrovascular pathology in Alzheimer's disease compared to normal aging,” Gerontology, vol. 43, no. 1-2, pp. 26–43, 1997. View at Google Scholar · View at Scopus
  92. M. F. O'Rourke and J. Hashimoto, “Mechanical factors in arterial aging,” Journal of the American College of Cardiology, vol. 50, no. 1, pp. 1–13, 2007. View at Google Scholar
  93. S. R. Waldstein, S. C. Rice, J. F. Thayer, S. S. Najjar, A. Scuteri, and A. B. Zonderman, “Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore longitudinal study of aging,” Hypertension, vol. 51, no. 1, pp. 99–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. E. Duron and O. Hanon, “Antihypertensive treatments, cognitive decline, and dementia,” Journal of Alzheimer's Disease, vol. 20, no. 3, pp. 903–914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. A. S. Khachaturian, P. P. Zandi, C. G. Lyketsos et al., “Antihypertensive medication use and incident alzheimer disease: the cache county study,” Archives of Neurology, vol. 63, no. 5, pp. 686–692, 2006. View at Google Scholar · View at Scopus
  96. M. M. Mielke, P. P. Zandi, K. Blennow et al., “Low serum potassium in mid life associated with decreased cerebrospinal fluid Aβ42 in late life,” Alzheimer Disease and Associated Disorders, vol. 20, no. 1, pp. 30–36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. R. D. McCabe, M. A. Bakarich, K. Srivastava, and D. B. Young, “Potassium inhibits free radical formation,” Hypertension, vol. 24, no. 1, pp. 77–82, 1994. View at Google Scholar · View at Scopus
  98. D. B. Young and G. Ma, “Vascular protective effects of potassium,” Seminars in Nephrology, vol. 19, no. 5, pp. 477–486, 1999. View at Google Scholar · View at Scopus
  99. W. T. Chen, R. A. Brace, J. B. Scott, D. K. Anderson, and F. J. Haddy, “The mechanism of the vasodilator action of potassium,” Proceedings of the Society for Experimental Biology and Medicine, vol. 140, no. 3, pp. 820–824, 1972. View at Google Scholar · View at Scopus
  100. J. C. de la Torre and G. B. Stefano, “Evidence that Alzheimer's disease is a microvascular disorder: the role of constitutive nitric oxide,” Brain Research Reviews, vol. 34, no. 3, pp. 119–136, 2000. View at Publisher · View at Google Scholar · View at Scopus
  101. R. Ramchandra, C. J. Barrett, and S. C. Malpas, “Nitric oxide and sympathetic nerve activity in the control of blood pressure,” Clinical and Experimental Pharmacology and Physiology, vol. 32, no. 5-6, pp. 440–446, 2005. View at Publisher · View at Google Scholar · View at Scopus
  102. T. Pak, P. Cadet, K. J. Mantione, and G. B. Stefano, “Morphine via nitric oxide modulates β-amyloid metabolism: a novel protective mechanism for Alzheimer's disease,” Medical Science Monitor, vol. 11, no. 10, pp. BR357–BR366, 2005. View at Google Scholar · View at Scopus
  103. H. B. Posner, M. X. Tang, J. Luchsinger, R. Lantigua, Y. Stern, and R. Mayeux, “The relationship of hypertension in the elderly to AD, vascular dementia, and cognitive function,” Neurology, vol. 58, no. 8, pp. 1175–1181, 2002. View at Google Scholar · View at Scopus
  104. P. W. Franks, “White-coat hypertension and risk of stroke: do the data really tell us what we need to know?” Hypertension, vol. 45, no. 2, pp. 183–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  105. S. J. Bodlin, “Heart failure in the elderly,” Expert Review of Cardiovascular Therapy, vol. 3, no. 1, pp. 99–106, 2005. View at Publisher · View at Google Scholar
  106. G. Zuccalà, C. Cattel, E. Manes-Gravina, M. G. Di Niro, A. Cocchi, and R. Bernabei, “Left ventricular dysfunction: a clue to cognitive impairment in older patients with heart failure,” Journal of Neurology Neurosurgery and Psychiatry, vol. 63, no. 4, pp. 509–512, 1997. View at Google Scholar · View at Scopus
  107. T. C. De Toledo Ferraz Alves, L. K. Ferreira, M. Wajngarten, and G. F. Busatto, “Cardiac disorders as risk factors for Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 20, no. 3, pp. 749–763, 2010. View at Publisher · View at Google Scholar · View at Scopus
  108. G. Zuccalà, G. Onder, E. Marzetti et al., “Use of angiotensin-converting enzyme inhibitors and variations in cognitive performance among patients with heart failure,” European Heart Journal, vol. 26, no. 3, pp. 226–233, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Singh-Manoux, S. Sabia, M. Kivimaki, M. J. Shipley, J. E. Ferrie, and M. G. Marmot, “Cognition and incident coronary heart disease in late midlife: the Whitehall II study,” Intelligence, vol. 37, no. 6, pp. 529–534, 2009. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Solomon, M. Kivipelto, B. Wolozin, J. Zhou, and R. A. Whitmer, “Midlife serum cholesterol and increased risk of Alzheimer's and vascular dementia three decades later,” Dementia and Geriatric Cognitive Disorders, vol. 28, no. 1, pp. 75–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. B. Mcguinness and P. Passmore, “Can statins prevent or help treat Alzheimer's disease?” Journal of Alzheimer's Disease, vol. 20, no. 3, pp. 925–933, 2010. View at Publisher · View at Google Scholar · View at Scopus
  112. J. C. de la Torre, “Alzheimer's disease is incurable but preventable,” Journal of Alzheimer's Disease, vol. 20, no. 3, pp. 861–870, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. K. Nilsson, L. Gustafson, M. Nornholm, and B. Hultberg, “Plasma homocysteine, apolipoprotein e status and vascular disease in elderly patients with mental illness,” Clinical Chemistry and Laboratory Medicine, vol. 48, no. 1, pp. 129–135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. M. J. Kotze and S. J. V. Rensburg, “Pathology supported genetic testing and treatment of cardiovascular disease in middle age for prevention of alzheimer's disease,” Metabolic Brain Disease, vol. 27, no. 3, pp. 255–256, 2012. View at Publisher · View at Google Scholar
  115. M. Thambisetty, L. Beason-Held, Y. An, M. A. Kraut, and S. M. Resnick, “APOE ε4 genotype and longitudinal changes in cerebral blood flow in normal aging,” Archives of Neurology, vol. 67, no. 1, pp. 93–98, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Triantafyllidi, C. Arvaniti, J. Lekakis et al., “Cognitive impairment is related to increased arterial stiffness and microvascular damage in patients with never-treated essential hypertension,” American Journal of Hypertension, vol. 22, no. 5, pp. 525–530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. O. Frank, “The basic shape of the arterial pulse. First treatise: mathematical analysis,” Journal of Molecular and Cellular Cardiology, vol. 22, no. 3, pp. 255–277, 1990. View at Google Scholar · View at Scopus
  118. G. F. Mitchell, M. A. Van Buchem, S. Sigurdsson et al., “Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility-Reykjavik Study,” Brain, vol. 134, no. 11, pp. 3398–3407, 2011. View at Publisher · View at Google Scholar
  119. G. F. Mitchell, H. Parise, E. J. Benjamin et al., “Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study,” Hypertension, vol. 43, no. 6, pp. 1239–1245, 2004. View at Publisher · View at Google Scholar · View at Scopus
  120. O. Hanon, S. Haulon, H. Lenoir et al., “Relationship between arterial stiffness and cognitive function in elderly subjects with complaints of memory loss,” Stroke, vol. 36, no. 10, pp. 2193–2197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  121. J. C. de la Torre and T. Mussivand, “Can disturbed brain microcirculation cause Alzheimer's disease?” Neurological Research, vol. 15, no. 3, pp. 146–153, 1993. View at Google Scholar · View at Scopus
  122. R. J. Caselli, K. Chen, W. Lee, G. E. Alexander, and E. M. Reiman, “Correlating cerebral hypometabolism with future memory decline in subsequent converters to amnestic pre-mild cognitive impairment,” Archives of Neurology, vol. 65, no. 9, pp. 1231–1236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. A. E. Roher, C. Esh, T. A. Kokjohn et al., “Circle of Willis Atherosclerosis Is a Risk Factor for Sporadic Alzheimer's Disease,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 11, pp. 2055–2062, 2003. View at Publisher · View at Google Scholar · View at Scopus
  124. H. J. Milionis, M. Florentin, and S. Giannopoulos, “Metabolic syndrome and alzheimer's disease: a link to a vascular hypothesis?” CNS Spectrums, vol. 13, no. 7, pp. 606–613, 2008. View at Google Scholar · View at Scopus
  125. H. Agüero-Torres, M. Kivipelto, and E. von Strauss, “Rethinking the dementia diagnoses in a population-based study: what is Alzheimer's disease and what is vascular dementia? A study from the Kungsholmen project,” Dementia and Geriatric Cognitive Disorders, vol. 22, no. 3, pp. 244–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  126. D. S. Dede, B. Yavuz, B. B. Yavuz et al., “Assessment of endothelial function in Alzheimer's disease: is Alzheimer's disease a vascular disease?” Journal of the American Geriatrics Society, vol. 55, no. 10, pp. 1613–1617, 2007. View at Publisher · View at Google Scholar · View at Scopus
  127. A. Ruitenberg, T. den Heijer, S. L. M. Bakker et al., “Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study,” Annals of Neurology, vol. 57, no. 6, pp. 789–794, 2005. View at Publisher · View at Google Scholar · View at Scopus
  128. J. Lindsay, D. Laurin, R. Verreault et al., “Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging,” American Journal of Epidemiology, vol. 156, no. 5, pp. 445–453, 2002. View at Publisher · View at Google Scholar · View at Scopus
  129. J. C. de la Torre, A. Čada, N. Nelson, G. Davis, R. J. Sutherland, and F. Gonzalez-Lima, “Reduced cytochrome oxidase and memory dysfunction after chronic brain ischemia in aged rats,” Neuroscience Letters, vol. 223, no. 3, pp. 165–168, 1997. View at Publisher · View at Google Scholar · View at Scopus
  130. J. C. de la Torre, “Impaired brain microcirculation may trigger Alzheimer's disease,” Neuroscience and Biobehavioral Reviews, vol. 18, no. 3, pp. 397–401, 1994. View at Publisher · View at Google Scholar · View at Scopus
  131. A. Hofman, A. Ott, M. M. B. Breteler et al., “Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer's disease in the Rotterdam Study,” The Lancet, vol. 349, no. 9046, pp. 151–154, 1997. View at Publisher · View at Google Scholar · View at Scopus
  132. I. Casserly and E. Topol, “Convergence of atherosclerosis and Alzheimer's disease: inflammation, cholesterol, and misfolded proteins,” The Lancet, vol. 363, no. 9415, pp. 1139–1146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Van Oijen, F. J. De Jong, J. C. M. Witteman, A. Hofman, P. J. Koudstaal, and M. M. B. Breteler, “Atherosclerosis and risk for dementia,” Annals of Neurology, vol. 61, no. 5, pp. 403–410, 2007. View at Publisher · View at Google Scholar · View at Scopus
  134. J. C. de la Torre, “Is Alzheimer's disease a neurodegenerative or a vascular disorder? Data, dogma, and dialectics,” The Lancet Neurology, vol. 3, no. 3, pp. 184–190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. M. C. Polidori, L. Pientka, and P. Mecocci, “A review of the major vascular risk factors related to Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 32, no. 3, pp. 521–530, 2012. View at Google Scholar
  136. L. Mosconi, R. Mistur, R. Switalski et al., “FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer's disease,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 36, no. 5, pp. 811–822, 2009. View at Publisher · View at Google Scholar · View at Scopus
  137. J. C. Morris, “Mild cognitive impairment and preclinical Alzheimer's disease,” Geriatrics, vol. 60, no. 6, supplement, pp. 9–14, 2005. View at Google Scholar · View at Scopus
  138. D. H. S. Silverman and M. E. Phelps, “Application of positron emission tomography for evaluation of metabolism and blood flow in human brain: normal development, aging, dementia, and stroke,” Molecular Genetics and Metabolism, vol. 74, no. 1-2, pp. 128–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  139. J. C. de la Torre, “Critical threshold cerebral hypoperfusion causes Alzheimer's disease?” Acta Neuropathologica, vol. 98, no. 1, pp. 1–8, 1999. View at Publisher · View at Google Scholar · View at Scopus
  140. P. T. Lansbury, “Inhibition of amyloid formation: a strategy to delay the onset of Alzheimer's disease,” Current Opinion in Chemical Biology, vol. 1, no. 2, pp. 260–267, 1997. View at Google Scholar
  141. E. Y. Chi, S. L. Frey, A. Winans et al., “Amyloid-beta fibrillogenesis seeded by interface-induced peptide misfolding and self-assembly,” Biophysical Journal, vol. 98, no. 10, pp. 2299–2308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. C. B. Anfinsen, “Principles that govern the folding of protein chains,” Science, vol. 181, no. 4096, pp. 223–230, 1973. View at Google Scholar · View at Scopus
  143. K. A. Calhoun and J. R. Swartz, “Energy systems for ATP generation in cell-free energy reactions,” in Methods in Molecular Biology, In Vitro Transcription and Translation Protocols, G. Grandi, Ed., vol. 375, Humana Press, Totowa, NJ, USA, 2nd edition, 2004. View at Google Scholar
  144. M. Peñas, J. Sánchez-Prieto, E. Martín-González, M. Fernández, and M. J. López-Pérez, “The energy requirement for protein synthesis in rat brain mitochondria purified by phase partition,” Revista Espanola de Fisiologia, vol. 44, no. 1, pp. 51–56, 1988. View at Google Scholar · View at Scopus
  145. R. Fluhrer, A. Capell, G. Westmeyer et al., “A non-amyloidogenic function of BACE-2 in the secretory pathway,” Journal of Neurochemistry, vol. 81, no. 5, pp. 1011–1020, 2002. View at Publisher · View at Google Scholar · View at Scopus
  146. J. C. de la Torre, “Hemodynamic consequences of deformed microvessels in the brain in Alzheimer's disease,” Annals of the New York Academy of Sciences, vol. 826, pp. 75–91, 1997. View at Publisher · View at Google Scholar · View at Scopus
  147. K. A. Josephs, J. L. Whitwell, Z. Ahmed et al., “β-amyloid burden is not associated with rates of brain atrophy,” Annals of Neurology, vol. 63, no. 2, pp. 204–212, 2008. View at Publisher · View at Google Scholar · View at Scopus
  148. A. Cada, J. C. de la Torre, and F. Gonzalez-Lima, “Chronic cerebrovascular ischemia in aged rats: effects on brain metabolic capacity and behavio,” Neurobiology of Aging, vol. 21, no. 2, pp. 225–233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  149. N. P. Abdollahian, A. Cada, F. Gonzalez-Lima, and J. C. de la Torre, “Cytochrome oxidase: a predictive marker of neurodegeneration,” in Cytochrome Oxidase in Neuronal Metabolism and Alzheimer’s Disease, pp. 233–261, Plenum Press, New York, NY, USA, 1998. View at Google Scholar
  150. C. Huang, L. O. Wahlund, L. Svensson, B. Winblad, and P. Julin, “Cingulate cortex hypoperfusion predicts Alzheimer's disease in mild cognitive impairment,” BMC Neurology, vol. 2, no. 1, article 9, 2002. View at Google Scholar · View at Scopus
  151. A. Caroli, C. Testa, C. Geroldi et al., “Cerebral perfusion correlates of conversion to Alzheimer's disease in amnestic mild cognitive impairment,” Journal of Neurology, vol. 254, no. 12, pp. 1698–1707, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. J. C. de la Torre, “A turning point for Alzheimer's disease?” BioFactors, vol. 38, no. 2, pp. 78–83, 2012. View at Publisher · View at Google Scholar
  153. J. C. de la Torre, “Impact of heart disease and stroke on Alzheimer’s disease,” Neurological Research Special Issue, vol. 28, pp. 577–684, 2006. View at Google Scholar
  154. J. C. de la Torre, “How do heart disease and stroke become risk factors for Alzheimer's disease?” Neurological Research, vol. 28, no. 6, pp. 637–644, 2006. View at Publisher · View at Google Scholar · View at Scopus
  155. M. J. Stampfer, “Cardiovascular disease and Alzheimer's disease: common links,” Journal of Internal Medicine, vol. 260, no. 3, pp. 211–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  156. J. C. de la Torre, “Alzheimer disease as a vascular disorder: nosological evidence,” Stroke, vol. 33, no. 4, pp. 1152–1162, 2002. View at Publisher · View at Google Scholar · View at Scopus
  157. C. Reitz, A. M. Brickman, J. A. Luchsinger et al., “Frequency of subclinical heart disease in elderly persons with dementia,” American Journal of Geriatric Cardiology, vol. 16, no. 3, pp. 183–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  158. M. Naghavi, P. Libby, E. Falk et al., “From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: part II,” Circulation, vol. 108, no. 15, pp. 1772–1778, 2003. View at Publisher · View at Google Scholar · View at Scopus
  159. L. H. Kuller, O. L. Lopez, A. Newman et al., “Risk factors for dementia in the Cardiovascular Health Cognition Study,” Neuroepidemiology, vol. 22, no. 1, pp. 13–22, 2003. View at Publisher · View at Google Scholar · View at Scopus
  160. S. Villeneuve, S. Belleville, F. Massoud, C. Bocti, and S. Gauthier, “Impact of vascular risk factors and diseases on cognition in persons with mild cognitive impairment,” Dementia and Geriatric Cognitive Disorders, vol. 27, no. 4, pp. 375–381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. J. A. Luchsinger, C. Reitz, L. S. Honig, M. X. Tang, S. Shea, and R. Mayeux, “Aggregation of vascular risk factors and risk of incident Alzheimer disease,” Neurology, vol. 65, no. 4, pp. 545–551, 2005. View at Publisher · View at Google Scholar · View at Scopus
  162. H. Feigenbaum, W. F. Armstrong, and T. Ryan, Feigenbaum's Echocardiography, Lippincott Wiliams & Wilkins, Philadelphia, Pa, USA, 6th edition, 2005.
  163. S. N. Ahmed, F. M. Syed, and D. T. Porembka, “Echocardiographic evaluation of hemodynamic parameters,” Critical Care Medicine, vol. 35, no. 8, pp. S323–S329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. A. E. Roher, Z. Garami, A. V. Alexandrov et al., “Interaction of cardiovascular disease and neurodegeneration: transcranial Doppler ultrasonography and Alzheimer's disease,” Neurological Research, vol. 28, no. 6, supplement, pp. 672–678, 2006. View at Publisher · View at Google Scholar · View at Scopus
  165. G. Zuccalà, E. Marzetti, M. Cesari et al., “Correlates of cognitive impairment among patients with heart failure: results of a multicenter survey,” American Journal of Medicine, vol. 118, no. 5, pp. 496–502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  166. E. M. Reiman, J. B. S. Langbaum, and P. N. Tariot, “Alzheimers Prevention Initiative: a proposal to evaluate presymptomatic treatments as quickly as possible,” Biomarkers in Medicine, vol. 4, no. 1, pp. 3–14, 2010. View at Publisher · View at Google Scholar · View at Scopus
  167. K. Kitagawa, “Cerebral blood flow measurement by PET in hypertensive subjects as a marker of cognitive decline,” Journal of Alzheimer's Disease, vol. 20, no. 3, pp. 855–859, 2010. View at Publisher · View at Google Scholar · View at Scopus
  168. A. Cherubini, D. T. Lowenthal, E. Paran, P. Mecocci, L. S. Williams, and U. Senin, “Hypertension and cognitive function in the elderly,” Disease-a-Month, vol. 56, no. 3, pp. 106–147, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. B. Henderson and J. C. de la Torre, “Reversal of chronic ischemia in the adult rat: common carotid anastomosis and improvement in memory dysfunction,” Society for Neuroscience, vol. 25, article 55, 1999. View at Google Scholar
  170. H. S. Goldsmith, “Role of the omentum in the treatment of Alzheimer's disease,” Neurological Research, vol. 23, no. 6, pp. 555–564, 2001. View at Publisher · View at Google Scholar · View at Scopus
  171. R. S. Marshall, R. M. Lazar, J. Pile-Spellman et al., “Recovery of brain function during induced cerebral hypoperfusion,” Brain, vol. 124, no. 6, pp. 1208–1217, 2001. View at Google Scholar · View at Scopus
  172. S. E. Vermeer, N. D. Prins, T. Den Heijer, A. Hofman, P. J. Koudstaal, and M. M. B. Breteler, “Silent brain infarcts and the risk of dementia and cognitive decline,” The New England Journal of Medicine, vol. 348, no. 13, pp. 1215–1222, 2003. View at Publisher · View at Google Scholar · View at Scopus
  173. R. Sulkava and T. Erkinjuntti, “Vascular dementia due to cardiac arrhythmias and systemic hypotension,” Acta Neurologica Scandinavica, vol. 76, no. 2, pp. 123–128, 1987. View at Google Scholar · View at Scopus
  174. M. Kähönen-Väre, S. Brunni-Hakala, M. Lindroos, K. Pitkala, T. Strandberg, and R. Tilvis, “Left ventricular hypertrophy and blood pressure as predictors of cognitive decline in old age,” Aging, vol. 16, no. 2, pp. 147–152, 2004. View at Google Scholar · View at Scopus
  175. K. G. Mawuenyega, W. Sigurdson, V. Ovod et al., “Decreased clearance of CNS β-amyloid in Alzheimer's disease,” Science, vol. 330, no. 6012, p. 1774, 2010. View at Publisher · View at Google Scholar · View at Scopus