Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2012, Article ID 794043, 8 pages
http://dx.doi.org/10.1155/2012/794043
Research Article

Changes in Heart Rate Variability of Depressed Patients after Electroconvulsive Therapy

1Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
2Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA 30322, USA
3Center for Clinical Investigation, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
4Department of Biomedical Sciences, University of Modena and Reggio Emilia, 141100 Modena, Italy
5GE Healthcare, Wauwatosa, WI 53226, USA
6Department of Psychiatry & Behavioral Sciences, Mental Health Hospital Center, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA

Received 30 March 2012; Revised 8 July 2012; Accepted 16 July 2012

Academic Editor: R. M. Carney

Copyright © 2012 Erica B. Royster et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. W. F. Campbell, “Can analysis of heart rate variability predict arrhythmias and antiarrhythmic effects?” in Practice and Progress in Cardiac Pacing and Electrophysiology, A. M. Oto, Ed., pp. 63–69, Kluwer Academic Publishers, Dordrecht, Netherlands, 1996. View at Google Scholar
  2. Task Force of the Europen Society of Cardiology and The North American Society of Pacing Electrophysiology, “Heart rate variability: standards of measurement, physiological interpretation and clinical use,” European Heart Journal, vol. 17, pp. 354–381, 1996. View at Publisher · View at Google Scholar
  3. T. Rechlin, M. Weis, and D. Claus, “Heart rate variability in depressed patients and differential effects of paroxetine and amitriptyline on cardiovascular autonomic functions,” Pharmacopsychiatry, vol. 27, no. 3, pp. 124–128, 1994. View at Google Scholar · View at Scopus
  4. T. Rechlin, “The effect of amitriptyline, doxepin, fluvoxamine, and paroxetine treatment on heart rate variability,” Journal of Clinical Psychopharmacology, vol. 14, no. 6, pp. 392–395, 1994. View at Google Scholar · View at Scopus
  5. R. M. Carney, R. D. Saunders, K. E. Freedland, P. Stein, M. W. Rich, and A. S. Jaffe, “Association of depression with reduced heart rate variability in coronary artery disease,” American Journal of Cardiology, vol. 76, no. 8, pp. 562–564, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. S. M. Guinjoan, M. S. L. De Guevara, C. Correa et al., “Cardiac parasympathetic dysfunction related to depression in older adults with acute coronary syndromes,” Journal of Psychosomatic Research, vol. 56, no. 1, pp. 83–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. R. M. Carney, K. E. Freedland, P. K. Stein, J. A. Skala, P. Hoffman, and A. S. Jaffe, “Change in heart rate and heart rate variability during treatment for depression in patients with coronary heart disease,” Psychosomatic Medicine, vol. 62, no. 5, pp. 639–647, 2000. View at Google Scholar · View at Scopus
  8. P. K. Stein, R. M. Carney, K. E. Freedland et al., “Severe depression is associated with markedly reduced heart rate variability in patients with stable coronary heart disease,” Journal of Psychosomatic Research, vol. 48, no. 4-5, pp. 493–500, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. V. K. Yeragani, R. Pohl, R. Balon et al., “Effect of imipramine treatment on heart rate variability measures,” Neuropsychobiology, vol. 26, no. 1-2, pp. 27–32, 1992. View at Google Scholar · View at Scopus
  10. S. Balogh, D. F. Fitzpatrick, S. E. Hendricks, and S. R. Paige, “Increases in heart rate variability with successful treatment in patients with major depressive disorder,” Psychopharmacology Bulletin, vol. 29, no. 2, pp. 201–206, 1993. View at Google Scholar · View at Scopus
  11. V. K. Yeragani, V. Pesce, A. Jayaraman, and S. Roose, “Major depression with ischemic heart disease: effects of paroxetine and nortriptyline on long-term heart rate variability measures,” Biological Psychiatry, vol. 52, no. 5, pp. 418–429, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. V. K. Yeragani and K. A. Radhakrishna Rao, “Nonlinear measures of QT interval series: novel indices of cardiac repolarization lability: MEDqthr and LLEqthr,” Psychiatry Research, vol. 117, no. 2, pp. 177–190, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. D. E. Vigo, L. N. Siri, M. S. Ladrón De Guevara et al., “Relation of depression to heart rate nonlinear dynamics in patients ≥60 years of age with recent unstable angina pectoris or acute myocardial infarction,” American Journal of Cardiology, vol. 93, no. 6, pp. 756–760, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. A. L. Goldberger, “Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside,” Lancet, vol. 347, no. 9011, pp. 1312–1314, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. J. L. Anderson and B. D. Horne, “Nonlinear heart rate variability: a better ECG predictor of cardiovascular risk?” Journal of Cardiovascular Electrophysiology, vol. 16, no. 1, pp. 21–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. K. Schultz, E. A. Anderson, and P. Van De Borne, “Heart rate variability before and after treatment with electroconvulsive therapy,” Journal of Affective Disorders, vol. 44, no. 1, pp. 13–20, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. V. M. Karpyak, K. G. Rasmussen, S. C. Hammill, and D. A. Mrazek, “Changes in heart rate variability in response to treatment with electroconvulsive therapy,” Journal of ECT, vol. 20, no. 2, pp. 81–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Nahshoni, D. Aizenberg, M. Sigler et al., “Heart rate variability in elderly patients before and after electroconvulsive therapy,” American Journal of Geriatric Psychiatry, vol. 9, no. 3, pp. 255–260, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, American Psychiatric Publishing, 4th edition, 2000.
  20. American Psychiatric Association Task Force on Electroconvulsive Therapy, The Practice of Electroconvulsive Therapy: Recommendations for Treatment, Training, and Privileging, American Psychiatric Association Press, Washington, DC, USA, 2001.
  21. A. T. Beck, R. A. Steer, and G. K. Brown, BDI-II. Beck Depression Inventory, 2nd edition, 1996.
  22. R. L. Spitzer, “Psychiatric diagnosis: are clinicians still necessary?” Comprehensive Psychiatry, vol. 24, no. 5, pp. 399–411, 1983. View at Google Scholar · View at Scopus
  23. J. McNames and M. Aboy, “Reliability and accuracy of heart rate variability metrics versus ECG segment duration,” Medical and Biological Engineering and Computing, vol. 44, no. 9, pp. 747–756, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Figiel, W. M. McDonald, W. V. McCall, and C. Zorumpski, “Electroconvulsive therapy,” in American Psychiatric Association Textbook of Psychopharmacology, A. F. Schatzberg and C. B. Nemeroff, Eds., pp. 523–545, American Psychiatric Association, Washington, DC, USA, 2nd edition, 1998. View at Google Scholar
  25. C. E. Coffey, R. D. Weiner, and P. E. Hinkle, “Augmentation of ECT seizures with caffeine,” Biological Psychiatry, vol. 22, no. 5, pp. 637–649, 1987. View at Google Scholar · View at Scopus
  26. M. Siepmann, K. Werner, C. Schindler, M. Mück-Weymann, and W. Kirch, “The effects of bypropion on heart rate variability in healthy volunteers,” Journal of Clinical Psychopharmacology, vol. 25, no. 3, pp. 283–285, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. P. E. Vardas, E. M. Kanoupakis, G. E. Kochiadakis, E. N. Simantirakis, M. E. Marketou, and G. I. Chlouverakis, “Effects of long-term digoxin therapy on heart rate variability, baroreceptor sensitivity, and exercise capacity in patients with heart failure,” Cardiovascular Drugs and Therapy, vol. 12, no. 1, pp. 47–55, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. A. N. Pehlivanidis, V. G. Athyros, D. S. Demitriadis, A. A. Papageorgiou, V. J. Bouloukos, and A. G. Kontopoulos, “Heart rate variability after long-term treatment with atorvastatin in hypercholesterolaemic patients with or without coronary artery disease,” Atherosclerosis, vol. 157, no. 2, pp. 463–469, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Melenovsky, D. Wichterle, J. Simek et al., “Effect of Atorvastatin and Fenofibrate on autonomic tone in subjects with combined hyperlipidemia,” American Journal of Cardiology, vol. 92, no. 3, pp. 337–341, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. M. W. Agelink, T. B. Majewski, J. Andrich, and M. Mueck-Weymann, “Short-term effects of intravenous benzodiazepines on autonomic neurocardiac regulation in humans: a comparison between midazolam, diazepam, and lorazepam,” Critical Care Medicine, vol. 30, no. 5, pp. 997–1006, 2002. View at Google Scholar · View at Scopus
  31. H. V. Huikuri, A. Ylitalo, S. M. Pikkujämsä et al., “Heart rate variability in systemic hypertension,” American Journal of Cardiology, vol. 77, no. 12, pp. 1073–1077, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. M. A. Nault, B. Milne, and J. L. Parlow, “Effects of the selective H1 and H2 histamine receptor antagonists loratadine and ranitidine on autonomic control of the heart,” Anesthesiology, vol. 96, no. 2, pp. 336–341, 2002. View at Google Scholar · View at Scopus
  33. V. Cacciatori, M. L. Gemma, F. Bellavere et al., “Power spectral analysis of heart rate in hypothyroidism,” European Journal of Endocrinology, vol. 143, no. 3, pp. 327–333, 2000. View at Google Scholar · View at Scopus
  34. P. K. Stein, J. N. Rottman, and R. E. Kleiger, “Effect of 21 mg transdermal nicotine patches and smoking cessation on heart rate variability,” American Journal of Cardiology, vol. 77, no. 9, pp. 701–705, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Taylor, “Antidepressant drugs and cardiovascular pathology: a clinical overview of effectiveness and safety,” Acta Psychiatrica Scandinavica, vol. 118, no. 6, pp. 434–442, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. H. Kemp, D. S. Quintana, M. A. Gray, K. L. Felmingham, K. Brown, and J. M. Gatt, “Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis,” Biological Psychiatry, vol. 67, no. 11, pp. 1067–1074, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. D. L. Musselman, M. K. Cowles, W. M. McDonald, and C. B. Nemeroff, “Effects of mood and anxiety disorders on the cardiovascular system,” in Hurst's the Heart, V. Fuster, R. A. O. 'Rourke, R. A. Walsh, and P. Poole-Wilson, Eds., pp. 2169–2187, McGraw-Hill, New York, NY, USA, 12th edition, 2008. View at Google Scholar
  38. H. A. Sackeim, J. Prudic, D. P. Devanand et al., “A prospective, randomized, double-blind comparison of bilateral and right unilateral electroconvulsive therapy at different stimulus intensities,” Archives of General Psychiatry, vol. 57, no. 5, pp. 425–434, 2000. View at Google Scholar · View at Scopus
  39. D. L. Eckberg, “Sympathovagal balance: a critical appraisal,” Circulation, vol. 98, no. 9, pp. 2643–2644, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Evrengul, H. Tanriverdi, S. Kose et al., “The relationship between heart rate recovery and heart rate variability in coronary artery disease,” Annals of Noninvasive Electrocardiology, vol. 11, no. 2, pp. 154–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Fujiwara, S. Kurokawa, Y. Asakura, Y. Wakao, K. Nishiwaki, and T. Komatsu, “Correlation between heart rate variability and haemodynamic fluctuation during induction of general anaesthesia: comparison between linear and non-linear analysis,” Anaesthesia, vol. 62, no. 2, pp. 117–121, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. G. R. H. Sandercock, P. D. Bromley, and D. A. Brodie, “The reliability of short-term measurements of heart rate variability,” International Journal of Cardiology, vol. 103, no. 3, pp. 238–247, 2005. View at Publisher · View at Google Scholar · View at Scopus