Table of Contents
Cardiovascular Psychiatry and Neurology
Volume 2013, Article ID 596945, 8 pages
http://dx.doi.org/10.1155/2013/596945
Research Article

Fatty Acid Desaturase Gene Polymorphisms and Metabolic Measures in Schizophrenia and Bipolar Patients Taking Antipsychotics

1Department of Clinical Social and Administrative Sciences, University of Michigan College of Pharmacy, 428 Church Street, Ann Arbor, MI 48109, USA
2University of North Carolina Eshelman School of Pharmacy, 301 Pharmacy Lane, Chapel Hill, NC 27599, USA
3Department of Psychiatry, School of Medicine, University of Michigan, 1500 Medical Center Drive, Ann Arbor, MI 48109, USA

Received 23 August 2013; Revised 1 November 2013; Accepted 1 November 2013

Academic Editor: Janusz K. Rybakowski

Copyright © 2013 Kyle J. Burghardt et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Stahl, D. A. Morrissette, L. Citrome et al., “‘Meta-guidelines’ for the management of patients with schizophrenia,” CNS Spectrums, vol. 18, no. 3, pp. 150–162, 2013. View at Google Scholar
  2. J. R. Geddes and D. J. Miklowitz, “Treatment of bipolar disorder,” The Lancet, vol. 381, no. 9878, pp. 1672–1682, 2013. View at Google Scholar
  3. K. R. Connolly and M. E. Thase, “The clinical management of bipolar disorder: a review of evidence-based guidelines,” Primary Care Companion to the Journal of Clinical Psychiatry, vol. 13, no. 4, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. H. Lee, S. Ripke, B. M. Neale et al., “Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs,” Nature Genetics, vol. 45, no. 9, pp. 984–994, 2013. View at Google Scholar
  5. J. W. Smoller, N. Craddock, K. Kendler et al., “Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis,” The Lancet, vol. 381, no. 9875, pp. 1371–1379, 2013. View at Google Scholar
  6. E. K. Green, D. Grozeva, I. Jones et al., “The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia,” Molecular Psychiatry, vol. 15, no. 10, pp. 1016–1022, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. O. L. J. Peerbooms, J. van Os, M. Drukker et al., “Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability?” Brain, Behavior, and Immunity, vol. 25, no. 8, pp. 1530–1543, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. C. W. Colton and R. W. Manderscheid, “Congruencies in increased mortality rates, years of potential life lost, and causes of death among public mental health clients in eight states,” Preventing Chronic Disease, vol. 3, no. 2, article A42, 2006. View at Google Scholar · View at Scopus
  9. A. Fagiolini, K. N. R. Chengappa, I. Soreca, and J. Chang, “Bipolar disorder and the metabolic syndrome: causal factors, psychiatric outcomes and economic burden,” CNS Drugs, vol. 22, no. 8, pp. 655–669, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. T. M. Laursen, T. Munk-Olsen, and M. Vestergaard, “Life expectancy and cardiovascular mortality in persons with schizophrenia,” Current Opinion in Psychiatry, vol. 25, no. 2, pp. 83–88, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Ward, P. Quon, S. Abouzaid, N. Haber, S. Ahmed, and E. Kim, “Cardiometabolic consequences of therapy for chronic schizophrenia using second-generation antipsychotic agents in a medicaid population: clinical and economic evaluation,” P and T, vol. 38, no. 2, pp. 109–115, 2013. View at Google Scholar
  12. G. Boden and G. I. Shulman, “Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and β-cell dysfunction,” European Journal of Clinical Investigation, vol. 32, supplement 3, pp. 14–23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. G. Boden, “Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes,” Experimental and Clinical Endocrinology and Diabetes, vol. 111, no. 3, pp. 121–124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Boden, “Obesity, insulin resistance and free fatty acids,” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 18, no. 2, pp. 139–143, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. D. M. Merino and D. W. Ma, “Genetic variation in lipid desaturases and its impact on the development of human disease,” Lipids in Health and Disease, vol. 9, article 63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Glaser, E. Lattka, P. Rzehak, C. Steer, and B. Koletzko, “Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health,” Maternal and Child Nutrition, vol. 7, supplement 2, pp. 27–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Lattka, T. Illig, J. Heinrich, and B. Koletzko, “Do FADS genotypes enhance our knowledge about fatty acid related phenotypes?” Clinical Nutrition, vol. 29, no. 3, pp. 277–287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. K. McNamara, R. Jandacek, T. Rider et al., “Abnormalities in the fatty acid composition of the postmortem orbitofrontal cortex of schizophrenic patients: gender differences and partial normalization with antipsychotic medications,” Schizophrenia Research, vol. 91, no. 1–3, pp. 37–50, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. O. Vik-Mo, A. B. Birkenaes, J. Fernø, H. Jonsdottir, O. A. Andreassen, and V. M. Steen, “Increased expression of lipid biosynthesis genes in peripheral blood cells of olanzapine-treated patients,” International Journal of Neuropsychopharmacology, vol. 11, no. 5, pp. 679–684, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Liu, R. Jandacek, T. Rider, P. Tso, and R. K. McNamara, “Elevated delta-6 desaturase (FADS2) expression in the postmortem prefrontal cortex of schizophrenic patients: relationship with fatty acid composition,” Schizophrenia Research, vol. 109, no. 1–3, pp. 113–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. R. K. McNamara, R. Jandacek, T. Rider, P. Tso, A. Cole-Strauss, and J. W. Lipton, “Differential effects of antipsychotic medications on polyunsaturated fatty acid biosynthesis in rats: relationship with liver delta6-desaturase expression,” Schizophrenia Research, vol. 129, no. 1, pp. 57–65, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. R. K. McNamara, R. Jandacek, T. Rider, P. Tso, A. Cole-Strauss, and J. W. Lipton, “Atypical antipsychotic medications increase postprandial triglyceride and glucose levels in male rats: relationship with stearoyl-CoA desaturase activity,” Schizophrenia Research, vol. 129, no. 1, pp. 66–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Liu and R. K. McNamara, “Elevated Delta-6 desaturase (FADS2) gene expression in the prefrontal cortex of patients with bipolar disorder,” Journal of Psychiatric Research, vol. 45, no. 2, pp. 269–272, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. D. R. Matthews, J. P. Hosker, and A. S. Rudenski, “Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man,” Diabetologia, vol. 28, no. 7, pp. 412–419, 1985. View at Google Scholar · View at Scopus
  25. R. Muniyappa, S. Lee, H. Chen, and M. J. Quon, “Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage,” The American Journal of Physiology, vol. 294, no. 1, pp. E15–E26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. S. M. Rössner, M. Neovius, A. Mattsson, C. Marcus, and S. Norgren, “HOMA-IR and QUICKI: decide on a general standard instead of making further comparisons,” Acta Paediatrica, International Journal of Paediatrics, vol. 99, no. 11, pp. 1735–1740, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. F. Ascaso, S. Pardo, J. T. Real, R. I. Lorente, A. Priego, and R. Carmena, “Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism,” Diabetes Care, vol. 26, no. 12, pp. 3320–3325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Borai, C. Livingstone, I. Kaddam, and G. Ferns, “Selection of the appropriate method for the assessment of insulin resistance,” BMC Medical Research Methodology, vol. 11, article 158, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Sabatti, S. K. Service, A.-L. Hartikainen et al., “Genome-wide association analysis of metabolic traits in a birth cohort from a founder population,” Nature Genetics, vol. 41, no. 1, pp. 35–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Tanaka, J. Shen, G. R. Abecasis et al., “Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI study,” PLoS Genetics, vol. 5, no. 1, Article ID e1000338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. S. Aulchenko, S. Ripatti, I. Lindqvist et al., “Loci influencing lipid levels and coronary heart disease risk in 16 european population cohorts,” Nature Genetics, vol. 41, no. 1, pp. 47–55, 2009. View at Google Scholar
  32. L. Schaeffer, H. Gohlke, M. Müller et al., “Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids,” Human Molecular Genetics, vol. 15, no. 11, pp. 1745–1756, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Malerba, L. Schaeffer, L. Xumerle et al., “SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease,” Lipids, vol. 43, no. 4, pp. 289–299, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Kathiresan, C. J. Willer, G. M. Peloso et al., “Common variants at 30 loci contribute to polygenic dyslipidemia,” Nature Genetics, vol. 41, no. 1, pp. 56–65, 2009. View at Google Scholar
  35. S. Marsh, C. R. King, A. A. Garsa, and H. L. McLeod, “Pyrosequencing of clinically relevant polymorphisms,” Methods in Molecular Biology, vol. 311, pp. 97–114, 2005. View at Google Scholar · View at Scopus
  36. J. C. Barrett, B. Fry, J. Maller, and M. J. Daly, “Haploview: analysis and visualization of LD and haplotype maps,” Bioinformatics, vol. 21, no. 2, pp. 263–265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Stephens, N. J. Smith, and P. Donnelly, “A new statistical method for haplotype reconstruction from population data,” The American Journal of Human Genetics, vol. 68, no. 4, pp. 978–989, 2001. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Stephens and P. Donnelly, “A comparison of bayesian methods for haplotype reconstruction from population genotype data,” The American Journal of Human Genetics, vol. 73, no. 5, pp. 1162–1169, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Dupuis, C. Langenberg, I. Prokopenko et al., “New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk,” Nature Genetics, vol. 42, no. 2, pp. 105–116, 2010. View at Google Scholar
  40. E. Ingelsson, C. Langenberg, M.-F. Hivert et al., “Detailed physiologic characterization reveals diverse mechanisms for novel genetic loci regulating glucose and insulin metabolism in humans,” Diabetes, vol. 59, no. 5, pp. 1266–1275, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. O. Y. Kim, H. H. Lim, L. I. Yang, J. S. Chae, and J. H. Lee, “Fatty acid desaturase (FADS) gene polymorphisms and insulin resistance in association with serum phospholipid polyunsaturated fatty acid composition in healthy Korean men: cross-sectional study,” Nutrition and Metabolism, vol. 8, article 24, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Bokor, J. Dumont, A. Spinneker et al., “Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios,” Journal of Lipid Research, vol. 51, no. 8, pp. 2325–2333, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. H. E. Bays, P. P. Toth, P. M. Kris-Etherton et al., “Obesity, adiposity, and dyslipidemia: a consensus statement from the national lipid association,” Journal of Clinical Lipidology, vol. 7, no. 4, pp. 304–383, 2013. View at Google Scholar