Table of Contents
Chromatography Research International
Volume 2011, Article ID 713256, 6 pages
http://dx.doi.org/10.4061/2011/713256
Research Article

Determination of Insecticide Residues in Vegetal Fruits

1Departamento de Química Analítica e Físico Química, Universidade Federal do Ceará, Rua do Contorno, S/N Campus do Pici Bl 940 CEP, 60451-970 Fortaleza, CE, Brazil
2Parque de Desenvolvimento Tecnológico do Ceará, Universidade Federal do Ceará, Campus do Pici, CEP, 60457-970 Fortaleza, CE, Brazil
3Departamento de Engenharia Hidráulica e Saneamento, Universidade Federal do Ceará, Rua do Contorno, S/N Campus do Pici Bl 713 CEP, 60451-970 Fortaleza, CE, Brazil

Received 4 November 2010; Accepted 23 December 2010

Academic Editor: Esther Turiel

Copyright © 2011 Dasciana Rodrigues et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Liu, J. Ru, J. Qu, R. Dai, Z. Wang, and C. Hu, “Removal of persistent organic pollutants from micro-polluted drinking water by triolein embedded absorbent,” Bioresource Technology, vol. 100, no. 12, pp. 2995–3002, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. M. C. Bruzzoniti, C. Sarzanini, G. Costantino, and M. Fungi, “Determination of herbicides by solid phase extraction gas chromatography-mass spectrometry in drinking waters,” Analytica Chimica Acta, vol. 578, no. 2, pp. 241–249, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. Y. Bai, L. Zhou, and J. Wang, “Organophosphorus pesticide residues in market foods in Shaanxi area, China,” Food Chemistry, vol. 98, no. 2, pp. 240–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Liu, K. Olivier, and C. N. Pope, “Comparative neurochemical effects of repeated methyl parathion or chlorpyrifos exposures in neonatal and adult rats,” Toxicology and Applied Pharmacology, vol. 158, no. 2, pp. 186–196, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. R. K. Juhler, “Optimized method for the determination of organophosphorus pesticides in meat and fatty matrices,” Journal of Chromatography A, vol. 786, no. 1, pp. 145–153, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. E. F. G. D. C. Dores and E. M. De-Lamonica-Freire, “Aquatic environment contamination by pesticides. Case study: water used for human consumption in primavera do leste, mato grosso—preliminary analyses,” Quimica Nova, vol. 24, no. 1, pp. 27–36, 2001. View at Google Scholar · View at Scopus
  7. A. Quintero, M. J. Caselles, G. Ettiene, N. G. De Colmenares, T. Ramírez, and D. Medina, “Monitoring of organophosphorus pesticide residues in vegetables of agricultural area in Venezuela,” Bulletin of Environmental Contamination and Toxicology, vol. 81, no. 4, pp. 393–396, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. European Commission directive (1993) 93/58/EEC Official. Journal of the European Communities L.211/6–39.
  9. FAO, “Agriculture towards 2010,” in Proceedings of the 27th Session of the FAO Conference, Rome, Italy, 1993, C 93/24.
  10. M. Suwalskya, C. Rodrígueza, F. Villenab, and C. P. Sotomayorc, “Human erythrocytes are affected by the organochloride insecticide chlordane,” Food and Chemical Toxicology, vol. 43, no. 5, pp. 647–654, 2005. View at Google Scholar
  11. S. Chen, L. Shi, Z. Shan, and Q. Hu, “Determination of organochlorine pesticide residues in rice and human and fish fat by simplified two-dimensional gas chromatography,” Food Chemistry, vol. 104, no. 3, pp. 1315–1319, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. M. Torres, Y. Picó, and J. Mañes, “Determination of pesticide residues in fruit and vegetables,” Journal of Chromatography A, vol. 754, no. 1-2, pp. 301–331, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Perret, A. Gentili, S. Marchese, M. Sergi, and G. D'Ascenzo, “Validation of a method for the determination of multiclass pesticide residues in fruit juices by liquid chromatography/tandem mass spectrometry after extraction by matrix solid-phase dispersion,” Journal of AOAC International, vol. 85, no. 3, pp. 724–730, 2002. View at Google Scholar · View at Scopus
  14. E. Zhao, L. Han, S. Jiang, Q. Wang, and Z. Zhou, “Application of a single-drop microextraction for the analysis of organophosphorus pesticides in juice,” Journal of Chromatography A, vol. 1114, no. 2, pp. 269–273, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. H. G. Bolles, H. E. Dixon-White, R. K. Peterson, J. R. Tomerlin, E. W. Day, and G. R. Oliver, “U.S. market basket study to determine residues of the insecticide chlorpyrifos,” Journal of Agricultural and Food Chemistry, vol. 47, no. 5, pp. 1817–1822, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Xu, D. Yuan, S. Zhong, and Q. Lin, “Determination of organophosphorus pesticides and related compounds in water samples by membrane extraction and gas chromatography,” Environmental Monitoring and Assessment, vol. 87, no. 2, pp. 155–168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Xi and H. Dong, “Application of solvent sublation for the determination of organophosphorous pesticides in vegetables by gas chromatography with a flame photometric detector,” Analytical Sciences, vol. 23, no. 3, pp. 295–298, 2007. View at Google Scholar
  18. H. J. Stan and B. Christall, “Residue analysis of onions and other foodstuffs with a complex matrix using two-dimensional capillary-GC with three selective detectors,” Fresenius' Journal of Analytical Chemistry, vol. 339, no. 6, pp. 395–398, 1991. View at Publisher · View at Google Scholar · View at Scopus
  19. Agência Nacional de Vigilância Sanitária, http://www.anvisa.gov.br.