Table of Contents
Chromatography Research International
Volume 2012 (2012), Article ID 458153, 6 pages
http://dx.doi.org/10.1155/2012/458153
Research Article

Selectivity of Brij-35 in Micellar Liquid Chromatographic Separation of Positional Isomers

National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Sindh 78060, Pakistan

Received 19 September 2011; Revised 31 October 2011; Accepted 14 November 2011

Academic Editor: Maria Jose Ruiz-Angel

Copyright © 2012 Najma Memon et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Berthod and C. GarcÃa-Ãlvarez-Coque, Micellar Liquid Chromatography, Marcel Dekker, New York, NY, USA, 2000.
  2. D. W. Armstrong and S. J. Henry, “Use of an aqueous micellar mobile phase for separation of phenols and polynuclear aromatic hydrocarbons via HPLC,” Journal of Liquid Chromatography, vol. 3, no. 5, pp. 657–662, 1980. View at Google Scholar · View at Scopus
  3. A. Detroyer, S. Stokbroekx, H. Bohets et al., “Fast monolithic micellar liquid chromatography: an alternative drug permeability assessing method for high-throughput screening,” Analytical Chemistry, vol. 76, no. 24, pp. 7304–7309, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. R. Izquierdo-Hornillos, R. Gonzalo-Lumbreras, and A. Santos-Montes, “Method development for cortisol and cortisone by micellar liquid chromatography using sodium dodecyl sulphate: application to urine samples of rugby players,” Journal of Chromatographic Science, vol. 43, no. 5, pp. 235–240, 2005. View at Google Scholar · View at Scopus
  5. N. Memon and M. I. Bhanger, “Micellar liquid chromatographic determination of aluminum using 8-hydroxyquinoline-5-sulphonic acid,” Acta Chromatographica, vol. 14, pp. 172–179, 2004. View at Google Scholar
  6. M. Gil-Agustí, J. Esteve-Romero, and M. H. Abraham, “Solute-solvent interactions in micellar liquid chromatography. Characterization of hybrid micellar systems of sodium dodecyl sulfate-pentanol,” Journal of Chromatography A, vol. 1117, no. 1, pp. 47–55, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. J. Ruiz-Ángel, M. C. Garcia-Álvarez-Coque, and A. Berthod, “New insights and recent developments in micellar liquid chromatography,” Separation and Purification Reviews, vol. 38, no. 1, pp. 45–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Memon, M. I. Bhanger, and M. Y. Khuhawer, “Determination of preservatives in cosmetics and food samples by micellar liquid chromatography,” Journal of Separation Science, vol. 28, no. 7, pp. 635–638, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. T. Takayanagi and S. Motomizu, “Equilibrium analysis of reactions between aromatic anions and nonionic surfactant micelles by capillary zone electrophoresis,” Journal of Chromatography A, vol. 853, no. 1-2, pp. 55–61, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Takayanagi, K. Fushimi, and S. Motomizu, “Separation of various positional isomers of aromatic anions by nonionic micellar electrokinetic chromatography coupled with ion association distribution,” Journal of Microcolumn Separations, vol. 12, no. 2, pp. 107–112, 2000. View at Google Scholar · View at Scopus
  11. A. S. Vlasenko, L. P. Loginova, and E. L. Iwashchenko, “Dissociation constants and micelle-water partition coefficients of hydroxybenzoic acids and parabens in surfactant micellar solutions,” Journal of Molecular Liquids, vol. 145, no. 3, pp. 182–187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Chasse, R. Wenslow, and Y. Bereznitski, “Chromatographic selectivity study of 4-fluorophenylacetic acid positional isomers separation,” Journal of Chromatography A, vol. 1156, no. 1-2, pp. 25–34, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. J. R. Torres-Lapasió, M. J. Ruiz-Ángel, M. C. García-Álvarez-Coque, and M. H. Abraham, “Micellar versus hydro-organic reversed-phase liquid chromatography: a solvation parameter-based perspective,” Journal of Chromatography A, vol. 1182, no. 2, pp. 176–196, 2008. View at Publisher · View at Google Scholar · View at PubMed
  14. M. J. Ruiz-Ángel, S. Carda-Broch, J. R. Torres-Lapasió, and M. C. García-Álvarez-Coque, “Retention mechanisms in micellar liquid chromatography,” Journal of Chromatography A, vol. 1216, no. 10, pp. 1798–1814, 2009. View at Publisher · View at Google Scholar · View at PubMed
  15. F. Mutelet, M. Rogalski, and M. H. Guermouche, “Micellar liquid chromatography of polyaromatic hydrocarbons using anionic, cationic, and nonionic surfactants: armstrong model, LSER interpretation,” Chromatographia, vol. 57, no. 9-10, pp. 605–610, 2003. View at Publisher · View at Google Scholar
  16. F. H. Quina, E. O. Alonso, and J. P. S. Farah, “Incorporation of nonionic solutes into aqueous micelles: a linear solvation free energy relationship analysis,” Journal of Physical Chemistry, vol. 99, no. 30, pp. 11708–11714, 1995. View at Google Scholar
  17. C. A. Rimmer and L. C. Sander, “Shape selectivity in embedded polar group stationary phases for liquid chromatography,” Analytical and Bioanalytical Chemistry, vol. 394, no. 1, pp. 285–291, 2009. View at Publisher · View at Google Scholar · View at PubMed
  18. M. F. Borgerding, F. H. Quina, W. L. Hinze, J. Bowermaster, and H. M. McNair, “Investigation of the retention mechanism in nonionic micellar liquid chromatography using an alkylbenzene homologous series,” Analytical Chemistry, vol. 60, no. 22, pp. 2520–2527, 1988. View at Google Scholar
  19. M. F. Borgerding and W. L. Hinze, “Characterization and evaluation of the use of nonionic polyoxyethylene (23) dodecanol micellar mobile phases in reversed-phase high-performance liquid chromatography,” Analytical Chemistry, vol. 57, no. 12, pp. 2183–2190, 1985. View at Google Scholar
  20. C. Quiñones-Torrelo, Y. Martin-Biosca, J. J. Martínez-Pla, S. Sagrado, R. M. Villanueva-Camañas, and M. J. Medina-Hernández, “QRAR models for central nervous system drugs using biopartitioning micellar chromatography,” Mini Reviews in Medicinal Chemistry, vol. 2, no. 2, pp. 145–161, 2002. View at Google Scholar
  21. M. Vitha and P. W. Carr, “The chemical interpretation and practice of linear solvation energy relationships in chromatography,” Journal of Chromatography A, vol. 1126, no. 1-2, pp. 143–194, 2006. View at Publisher · View at Google Scholar · View at PubMed
  22. A. Berthod, C. R. Mitchell, and D. W. Armstrong, “Could linear solvation energy relationships give insights into chiral recognition mechanisms?. 1. π-π and charge interaction in the reversed versus the normal phase mode,” Journal of Chromatography A, vol. 1166, no. 1-2, pp. 61–69, 2007. View at Publisher · View at Google Scholar · View at PubMed
  23. W. C. Jason, “Comparison of retention on traditional alkyl, Polar endcapped, and Polar embedded group stationary phases,” Journal of Separation Science, vol. 31, no. 10, pp. 1712–1718, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. Y. Chu and C. F. Poole, “System maps for retention of neutral organic compounds under isocratic conditions on a reversed-phase monolithic column,” Journal of Chromatography A, vol. 1003, no. 1-2, pp. 113–121, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Lu, J. Sun, Y. Wang et al., “Characterization of biopartitioning micellar chromatography system using monolithic column by linear solvation energy relationship and application to predict blood-brain barrier penetration,” Journal of Chromatography A, vol. 1216, no. 27, pp. 5190–5198, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. C. Altomare, A. Carotti, G. Trapani, and G. Liso, “Estimation of partitioning parameters of nonionic surfactans using calculated descriptors of molecular size, polarity, and hydrogen bonding,” Journal of Pharmaceutical Sciences, vol. 86, no. 12, pp. 1417–1425, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus