Table of Contents
Chromatography Research International
Volume 2012, Article ID 564243, 8 pages
http://dx.doi.org/10.1155/2012/564243
Research Article

Micellar LC Separation of Sesquiterpenic Acids and Their Determination in Valeriana officinalis L. Root and Extracts

Laboratory of Pharmacopoeial Analysis, Scientific and Expert Pharmacopoeial Centre, Astronomicheskaya Street 33, Kharkov 61085, Ukraine

Received 28 November 2011; Accepted 17 January 2012

Academic Editor: Samuel Carda-Broch

Copyright © 2012 Artem U. Kulikov. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Plushner, “Valerian: Valeriana officinalis,” American Journal of Health-System Pharmacy, vol. 57, no. 4, pp. 328–335, 2000. View at Google Scholar
  2. M. Goppel and G. Franz, “Stability control of valerian ground material and extracts: a new HPLC-method for the routine quantification of valerenic acids and lignans,” Pharmazie, vol. 59, no. 6, pp. 446–452, 2004. View at Google Scholar · View at Scopus
  3. D. Shohet, R. B. H. Wills, and D. L. Stuart, “Valepotriates and valerenic acids in commercial preparations of valerian available in Australia,” Pharmazie, vol. 56, no. 11, pp. 860–863, 2001. View at Google Scholar · View at Scopus
  4. N. Singh, A. P. Gupta, B. Singh, and V. K. Kaul, “Quantification of valerenic acid in Valeriana jatamansi and Valeriana officinalis by HPTLC,” Chromatographia, vol. 63, no. 3-4, pp. 209–213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. A. P. Gupta, M. M. Gupta, and S. Kumar, “Simultaneous determination of curcuminoids in Curcuma samples using high performance thin layer chromatography,” Journal of Liquid Chromatography and Related Technologies, vol. 22, no. 10, pp. 1561–1569, 1999. View at Publisher · View at Google Scholar
  6. N. Singh, A. P. Gupta, B. Singh, and V. K. Kaul, “Quantification of picroside-I and picroside-II in Picrorhiza kurroa by HPTLC,” Journal of Liquid Chromatography and Related Technologies, vol. 28, no. 11, pp. 1679–1691, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. C. Bicchi, A. Binello, and P. Rubiolo, “Packed column SFC/UV versus HPLC/UV analysis of valerenic acids and valepotriates in extracts of Valeriana officinalis L.,” Phytochemical Analysis, vol. 11, no. 3, pp. 179–183, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Bos, H. J. Woerdenbag, H. Hendriks et al., “Analytical aspects of phytotherapeutic valerian preparations,” Phytochemical Analysis, vol. 7, no. 3, pp. 143–151, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Bos, H. J. Woerdenbag, F. M. S. Van Putten, H. Hendriks, and J. J. C. Scheffer, “Seasonal variation of the essential oil, valerenic acid and derivatives, and valepotriates in Valeriana officinalis roots and rhizomes, and the selection of plants suitable for phytomedicines,” Planta Medica, vol. 64, no. 2, pp. 143–147, 1998. View at Google Scholar · View at Scopus
  10. S. Gobbeto and E. Lolla, “A new HPLC method for the analysis of valerenic acids in Valeriana officinalis extracts,” Fitoterapia, vol. 67, no. 2, pp. 159–162, 1996. View at Google Scholar · View at Scopus
  11. European Pharmacopoeia, Council of Europe, Strasbourg, France, 7th edition, 2011.
  12. A. Berthod and M. C. Garcia-Alvarez-Coque, Micellar Liquid Chromatography, Marcel Dekker, New York, NY, USA, 2000.
  13. A. U. Kulikov, A. G. Verushkin, and L. P. Loginova, “Comparison of micellar and reversed-phase liquid chromatography for determination of sulfamethoxazole and trimethoprim,” Chromatographia, vol. 61, no. 9-10, pp. 455–463, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. I. Rapado-Martínez, M. C. García-Alvarez-Coque, and R. M. Villanueva-Camañas, “Performance of micellar mobile phases in reversed-phase chromatography for the analysis of pharmaceuticals containing β-blockers and other antihypertensive drugs,” Analyst, vol. 121, no. 11, pp. 1677–1682, 1996. View at Google Scholar · View at Scopus
  15. B. L. Kolte, B. B. Raut, A. A. Deo, M. A. Bagool, and D. B. Shinde, “Simultaneous determination of metformin in its multicomponent dosage forms with glipizide and gliclazide using micellar liquid chromatography,” Journal of Liquid Chromatography and Related Technologies, vol. 26, no. 7, pp. 1117–1133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Bose, A. Durgbanshi, S. Carda-Broch, M. Gil-Agustí, M. E. Capella-Peiró, and J. Esteve-Romero, “Direct injection analysis of epinephrine, norepinephrine, and their naturally occurring derivatives in serum by micellar liquid chromatography with electrochemical detection,” Journal of Liquid Chromatography and Related Technologies, vol. 28, no. 20, pp. 3265–3281, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. U. Kulikov, M. N. Galat, and A. P. Boichenko, “Optimization of micellar LC conditions for the flavonoid separation,” Chromatographia, vol. 70, no. 3-4, pp. 371–379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Gu, X. Zeng, B. Kong, Y. Mao, W. Liu, and W. Wei, “Rapid determination of polyphenols in tobacco by MLC,” Chromatographia, vol. 71, no. 9-10, pp. 769–774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Bos, H. Hendriks, A. P. Bruins, J. Kloosterman, and G. Sipma, “Isolation and identification of valerenane sesquiterpenoids from Valeriana officinalis,” Phytochemistry, vol. 25, no. 1, pp. 133–135, 1985. View at Google Scholar
  20. S. Wang, G. Yang, Z. Li, L. Haiyan, J. Bai, and Y. Zhang, “Micellar liquid chromatography study of quantitative retention-activity relationships for antihypertensive drugs,” Chromatographia, vol. 64, no. 1-2, pp. 23–29, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. F. Borgerding, W. L. Hinze, L. D. Stafford, G. W. Fulp, and W. C. Hamlin, “Investigations of stationary phase modification by the mobile phase surfactant in micellar liquid chromatography,” Analytical Chemistry, vol. 61, no. 13, pp. 1353–1358, 1989. View at Google Scholar · View at Scopus
  22. M. F. Borgerding and W. L. Hinze, “Characterization and evaluation of the use of nonionic polyoxyethylene(23)dodecanol micellar mobile phases in reversed-phase high-performance liquid chromatography,” Analytical Chemistry, vol. 57, no. 12, pp. 2183–2190, 1985. View at Google Scholar · View at Scopus
  23. L. P. Loginova, L. V. Samokhina, A. P. Boichenko, and A. U. Kulikov, “Micellar liquid chromatography retention model based on mass-action concept of micelle formation,” Journal of Chromatography A, vol. 1104, no. 1-2, pp. 190–197, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. A. U. Kulikov, A. P. Boichenko, and A. G. Verushkin, “Optimization of micellar LC conditions for separation of opium alkaloids and their determination in pharmaceutical preparations,” Analytical Methods, vol. 3, no. 12, pp. 2749–2757, 2011. View at Publisher · View at Google Scholar
  25. “Validation of Analytical procedures: Text and Methodology Q2(R1),” http://www.ich.org/.
  26. J. A. Adamovics, Chromatographic Analysis of Pharmaceuticals, Marcel Dekker, New York, NY, USA, 1997.
  27. J. Ermer and H. -J. Ploss, “Validation in pharmaceutical analysis—part II: central importance of precision to establish acceptance criteria and for verifying and improving the quality of analytical data,” Journal of Pharmaceutical and Biomedical Analysis, vol. 37, no. 5, pp. 859–870, 2005. View at Publisher · View at Google Scholar
  28. G. A. Shabir, “Validation of high-performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization,” Journal of Chromatography A, vol. 987, no. 1-2, pp. 57–66, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. Ukrainian State Pharmacopoeia, REREIG, Kharkov, Ukraine, 1st edition, 2001.