Table of Contents
Chromatography Research International
Volume 2012, Article ID 812127, 8 pages
http://dx.doi.org/10.1155/2012/812127
Research Article

Separation of Polyphenols from Jordanian Olive Oil Mill Wastewater

Department of Chemistry, University of Jordan, P.O. Box 13003, Amman 11942, Jordan

Received 18 February 2012; Accepted 10 April 2012

Academic Editor: Eva Pocurull

Copyright © 2012 Ahmad A. Deeb et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. E. Kapellakis, K. P. Tsagarakis, and J. C. Crowther, “Olive oil history, production and by-product management,” Reviews in Environmental Science and Biotechnology, vol. 7, no. 1, pp. 1–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Borja, J. Alba, and C. J. Banks, “Impact of the main phenolic compounds of olive mill wastewater (OMW) on the kinetics of acetoclastic methanogenesis,” Process Biochemistry, vol. 32, no. 2, pp. 121–133, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. A. D'Annibale, C. Crestini, V. Vinciguerra, and G. Giovannozzi Sermanni, “The biodegradation of recalcitrant effluents from an olive mill by a white-rot fungus,” Journal of Biotechnology, vol. 61, no. 3, pp. 209–218, 1998. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Bisignano, A. Tomaino, R. Lo Cascio, G. Crisafi, N. Uccella, and A. Saija, “On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol,” Journal of Pharmacy and Pharmacology, vol. 51, no. 8, pp. 971–974, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. L. C. Davies, A. M. Vilhena, J. M. Novais, and S. Martins-Dias, “Olive mill wastewater characteristics: modelling and statistical analysis,” Grasas y Aceites, vol. 55, no. 3, pp. 233–241, 2004. View at Google Scholar · View at Scopus
  6. H. K. Obied, M. S. Allen, D. R. Bedgood, P. D. Prenzler, K. Robards, and R. Stockmann, “Bioactivity and analysis of biophenols recovered from olive mill waste,” Journal of Agricultural and Food Chemistry, vol. 53, no. 4, pp. 823–837, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Aliotta, A. Fiorentino, A. Oliva, and F. Temussi, “Olive oil mill wastewater: isolation of polyphenols and their phytotoxicity in vitro,” Allelopathy Journal, vol. 9, no. 1, pp. 9–17, 2002. View at Google Scholar · View at Scopus
  8. R. Capasso, G. Cristinzio, A. Evidente, and F. Scognamiglio, “Isolation, spectroscopy and selective phytotoxic effects of polyphenols from vegetable waste waters,” Phytochemistry, vol. 31, no. 12, pp. 4125–4128, 1992. View at Google Scholar · View at Scopus
  9. A. Fiorentino, A. Gentili, M. Isidori et al., “Environmental effects caused by olive mill wastewaters: toxicity comparison of low-molecular-weight phenol components,” Journal of Agricultural and Food Chemistry, vol. 51, no. 4, pp. 1005–1009, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Kotsou, I. Mari, K. Lasaridi, I. Chatzipavlidis, C. Balis, and A. Kyriacou, “The effect of olive oil mill wastewater (OMW) on soil microbial communities and suppressiveness against Rhizoctonia solani,” Applied Soil Ecology, vol. 26, no. 2, pp. 113–121, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. P. S. Rodis, V. T. Karathanos, and A. Mantzavinou, “Partitioning of olive oil antioxidants between oil and water phases,” Journal of Agricultural and Food Chemistry, vol. 50, no. 3, pp. 596–601, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Bravo, “Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance,” Nutrition Reviews, vol. 56, pp. 317–333, 1998. View at Google Scholar
  13. C. Manach, A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez, “Polyphenols: food sources and bioavailability,” American Journal of Clinical Nutrition, vol. 79, pp. 727–747, 2004. View at Google Scholar
  14. A. Scalbert, C. Manach, C. Morand, C. Rémésy, and L. Jiménez, “Dietary polyphenols and the prevention of diseases,” Critical Reviews in Food Science and Nutrition, vol. 45, no. 4, pp. 287–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. J. G. Fernandez-Bolanos, O. Lopez, F. Juan, J. Fernandez-Bolanos, and G. Rodriguez-Gutierrez, “Hydroxytyrosol and Derivatives: Isolation, Synthesis, and Biological Properties,” Current Organic Chemistry, vol. 12, no. 22, pp. 442–463, 2008. View at Publisher · View at Google Scholar
  16. O. I. Aruoma, M. Deiana, A. Jenner et al., “Effect of hydroxytyrosol found in extra virgin olive oil on oxidative dna damage and on low-density lipoprotein oxidation,” Journal of Agricultural and Food Chemistry, vol. 46, no. 12, pp. 5181–5187, 1998. View at Google Scholar · View at Scopus
  17. A. Petroni, M. Blasevich, M. Salami, N. Papini, G. F. Montedoro, and C. Galli, “Inhibition of platelet aggregation and eicosanoid production by phenolic components of olive oil,” Thrombosis Research, vol. 78, no. 2, pp. 151–160, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. R. De La Puerta, V. R. Gutierrez, and J. R. S. Hoult, “Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil,” Biochemical Pharmacology, vol. 57, no. 4, pp. 445–449, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. K. L. Tuck, H. W. Tan, and P. J. Hayball, “Synthesis of tritium-labeled hydroxytyrosol, a phenolic compound found in olive oil,” Journal of Agricultural and Food Chemistry, vol. 48, no. 9, pp. 4087–4090, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. J. C. Espín, C. Soler-Rivas, E. Cantos, F. A. Tomás-Barberán, and H. J. Wichers, “Synthesis of the antioxidant hydroxytyrosol using tyrosinase as biocatalyst,” Journal of Agricultural and Food Chemistry, vol. 49, no. 3, pp. 1187–1193, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Allouche, I. Fki, and S. Sayadi, “Toward a high yield recovery of antioxidants and purified hydroxytyrosol from olive mill wastewaters,” Journal of Agricultural and Food Chemistry, vol. 52, no. 2, pp. 267–273, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Ceccon, D. Saccù, G. Procida, and S. Cardinali, “Liquid chromatographic determination of simple phenolic compounds in waste waters from olive oil production plants,” Journal of AOAC International, vol. 84, no. 6, pp. 1739–1744, 2001. View at Google Scholar · View at Scopus
  23. R. Capasso, A. Evidente, and F. Scognamiglio, “A simple thin layer chromatographic method to detect the main polyphenols occurring in olive oil vegetation waters,” Phytochemical Analysis, vol. 3, pp. 270–275, 1992. View at Google Scholar
  24. V. Balice and O. Cera, “Acid phenolic fraction of the olive vegetation water determined by a gas chromatographic method,” Grasas Aceites, vol. 35, no. 5, pp. 178–180, 1984. View at Google Scholar
  25. M. Hamdi and J. L. Garcia, “Comparison between anaerobic filter and anaerobic contact process for fermented olive mill wastewaters,” Bioresource Technology, vol. 38, no. 1, pp. 23–30, 1991. View at Google Scholar
  26. M. Hamdi, “Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion,” Applied Biochemistry and Biotechnology, vol. 37, no. 2, pp. 155–163, 1992. View at Google Scholar
  27. M. Hamdi, “Thermoacidic precipitation of darkly coloured polyphenols of olive mill wastewaters,” Environmental Technology, vol. 14, no. 5, pp. 495–500, 1993. View at Google Scholar · View at Scopus
  28. E. De Marco, M. Savarese, A. Paduano, and R. Sacchi, “Characterization and fractionation of phenolic compounds extracted from olive oil mill wastewaters,” Food Chemistry, vol. 104, no. 2, pp. 858–867, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Jamoussi, A. Bedoui, B. B. Hassine, and A. Abderraba, “Analyses of phenolic compounds occurring in olive oil mill wastewaters by GC-MS,” Toxicological and Environmental Chemistry, vol. 87, no. 1, pp. 45–53, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. R. Lee, Y. C. Yeh, W. S. Hsiang, and B. H. Hwang, “Solid-phase microextraction and gas chromatography-mass spectrometry for determining chlorophenols from landfill leaches and soil,” Journal of Chromatography A, vol. 806, no. 2, pp. 317–324, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Penalver, E. Pocurull, F. Borrull, and R. M. Marce, “Solid-phase microextraction of the antifouling Irgarol 1051 and the fungicides dichlofluanid and 4-chloro-3-methylphenol in water samples,” Journal of Chromatography A, vol. 839, pp. 253–260, 1999. View at Google Scholar
  32. D. Jahr, “Determination of alkyl, chloro and mononitrophenols in water by sample-acetylation and automatic on-line solid phase extraction-gas chromatography-mass spectrometry,” Chromatographia, vol. 47, no. 1-2, pp. 49–56, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Zafra, M. J. B. Juárez, R. Blanc, A. Navalón, J. González, and J. L. Vílchez, “Determination of polyphenolic compounds in wastewater olive oil by gas chromatography-mass spectrometry,” Talanta, vol. 70, pp. 213–218, 2006. View at Google Scholar