Table of Contents
Chromatography Research International
Volume 2013, Article ID 310269, 8 pages
http://dx.doi.org/10.1155/2013/310269
Research Article

Separation of Cyclic Dipeptides (Diketopiperazines) from Their Corresponding Linear Dipeptides by RP-HPLC and Method Validation

Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Received 1 September 2012; Accepted 18 November 2012

Academic Editor: Toyohide Takeuchi

Copyright © 2013 Mareike Perzborn et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Johnson, W. G. Jackson, and T. E. Eble, “Isolation of L-leucyl-L-proline anhydride from microbiological fermentations,” Journal of the American Chemical Society, vol. 73, no. 6, pp. 2947–2948, 1951. View at Google Scholar · View at Scopus
  2. M. T. G. Holden, S. R. Chhabra, R. De Nys et al., “Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria,” Molecular Microbiology, vol. 33, no. 6, pp. 1254–1266, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Ström, J. Sjögren, A. Broberg, and J. Schnürer, “Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid,” Applied and Environmental Microbiology, vol. 68, no. 9, pp. 4322–4327, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Lin, Y. Fang, T. Zhu, Q. Gu, and W. Zhu, “A new diketopiperazine alkaloid isolated from an algicolous Aspergillus flavus strain,” Pharmazie, vol. 63, no. 4, pp. 323–325, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. C. Stierle, J. H. Cardellina, and G. A. Strobel, “Maculosin, a host-specific phytotoxin for spotted knapweed from Alternaria alternata,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 21, pp. 8008–8011, 1988. View at Google Scholar
  6. E. J. Dumdei, J. S. Simpson, M. J. Garson, K. A. Byriel, and C. H. L. Kennard, “New chlorinated metabolites from the tropical marine sponge Dysidea herbacea,” Australian Journal of Chemistry, vol. 50, no. 2, pp. 139–144, 1997. View at Google Scholar · View at Scopus
  7. F. Fdhila, V. Vázquez, J. L. Sánchez, and R. Riguera, “DD-Diketopiperazines: antibiotics active against Vibrio anguillarum isolated from marine bacteria associated with cultures of Pecten maximus,” Journal of Natural Products, vol. 66, no. 10, pp. 1299–1301, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. A. P. Einholm, K. E. Pedersen, T. Wind et al., “Biochemical mechanism of action of a diketopiperazine inactivator of plasminogen activator inhibitor-1,” Biochemical Journal, vol. 373, no. 3, pp. 723–732, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Lamm, I. Gozlan, A. Rotstein, and D. Avisar, “Detection of amoxicillin-diketopiperazine-2', 5' in wastewater samples.,” Journal of Environmental Science and Health A, vol. 44, no. 14, pp. 1512–1517, 2009. View at Google Scholar · View at Scopus
  10. U. Kertscher, M. Bienert, E. Krause, N. F. Sepetov, and B. Mehlis, “Spontaneous chemical degradation of substance P in the solid phase and in solution,” International Journal of Peptide and Protein Research, vol. 41, no. 3, pp. 207–211, 1993. View at Google Scholar · View at Scopus
  11. A. Kocijan, R. Grahek, D. Kocjan, and L. Zupančič-Kralj, “Effect of column temperature on the behaviour of some angiotensin converting enzyme inhibitors during high-performance liquid chromatographic analysis,” Journal of Chromatography B, vol. 755, no. 1-2, pp. 229–235, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Çubuk Demiralay and G. Özkan, “Optimization strategy for isocratic separation of α-aspartame and its breakdown products by reversed phase liquid chromatography,” Chromatographia, vol. 60, no. 9-10, pp. 579–582, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. V. George, S. Arora, B. K. Wadhwa, and A. K. Singh, “Analysis of multiple sweeteners and their degradation products in lassi by HPLC and HPTLC plates,” Journal of Food Science and Technology, vol. 47, no. 4, pp. 408–413, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Saito, M. Horie, Y. Hoshino, N. Nose, H. Nakazawa, and M. Fujita, “Determination of diketopiperazine in soft drinks by high performance liquid chromatography,” Journal of Liquid Chromatography, vol. 12, no. 4, pp. 571–582, 1989. View at Google Scholar · View at Scopus
  15. H. Y. Aboul-Enein and S. A. Bakr, “Comparative study of the separation and determination of aspartame and its decomposition products in bulk material and diet soft drinks by HPLC and CE,” Journal of Liquid Chromatography and Related Technologies, vol. 20, no. 9, pp. 1437–1444, 1997. View at Google Scholar · View at Scopus
  16. J.-D. Berset and N. Ochsenbein, “Stability considerations of aspartame in the direct analysis of artificial sweeteners in water samples using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS),” Chemosphere, vol. 88, no. 5, pp. 563–569, 2012. View at Publisher · View at Google Scholar
  17. I. Furda, P. D. Malizia, M. G. Kolor, and P. J. Vernieri, “Decomposition products of L-aspartyl-L-phenylalanine methyl ester and their identification by gas-liquid chromatography,” Journal of Agricultural and Food Chemistry, vol. 23, no. 2, pp. 340–343, 1975. View at Google Scholar · View at Scopus
  18. C. Liu, H. Wang, Y. Jiang, and Z. Du, “Rapid and simultaneous determination of amoxicillin, penicillin G, and their major metabolites in bovine milk by ultra-high-performance liquid chromatography-tandem mass spectrometry,” Journal of Chromatography B, vol. 879, no. 7-8, pp. 533–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. B. J. Compton, W. C. Purdy, and D. J. Phelps, “A high-performance liquid chromatographic technique for the determination of 2,5-piperazinedione in complex reaction mixtures,” Analytica Chimica Acta, vol. 105, no. 1, pp. 409–412, 1979. View at Google Scholar
  20. K. Yokozeki, N. Usui, T. Yukawa, Y. Hirose, and K. Kubota, “Process for producing L-aspartyl-L-phenylalanine and its diketopiperazine,” 0220028 B1, 1990.
  21. FDA, http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf, 2001.