Table of Contents
Chromatography Research International
Volume 2014 (2014), Article ID 361405, 11 pages
http://dx.doi.org/10.1155/2014/361405
Research Article

Extraction of Artemisinin, an Active Antimalarial Phytopharmaceutical from Dried Leaves of Artemisia annua L., Using Microwaves and a Validated HPTLC-Visible Method for Its Quantitative Determination

1Natural Products Research Laboratory, School of Studies in Chemistry and Biochemistry, Vikram University, Ujjain, Madhya Pradesh 456 010, India
2Green Technology Department, Ipca Laboratories Limited, Ratlam, Madhya Pradesh 457 002, India

Received 23 May 2014; Accepted 7 September 2014; Published 1 October 2014

Academic Editor: Qizhen Du

Copyright © 2014 Himanshu Misra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. H. Wernsdorfer, “Epidemiology of drug resistance in malaria,” Acta Tropica, vol. 56, no. 2-3, pp. 143–156, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. P. J. De Vries and T. K. Dien, “Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria,” Drugs, vol. 52, no. 6, pp. 818–836, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Gkrania-Klotsas and M. L. Lever, “An update on malaria prevention, diagnosis and treatment for the returning traveller,” Blood Reviews, vol. 21, no. 2, pp. 73–87, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Singh, V. K. Kaul, V. P. Mahajan, A. Singh, L. N. Misra, and R. S. Thakur, “Introduction of Artemisia annua in India and isolation of artemisinin, a promising antimalarial drug,” Indian Journal of Pharmaceutical Sciences, vol. 48, no. 5, pp. 137–138, 1986. View at Google Scholar · View at Scopus
  5. CIMAP, “Development of Agro-technologies for Artemisia annua for antimalarial drug artemisinin,” Annual Project Report 1986-87, Central Institute for Medicinal and Aromatic Plants, Lucknow, India.
  6. CIMAP, “Development of Agro-technologies for Artemisia annua for antimalarial drug artemisinin,” Annual Project Report 1988-89, Central Institute for Medicinal and Aromatic Plants, Lucknow, India.
  7. S. K. Gupta, P. Singh, P. Bajpai et al., “Morphogenetic variation for artemisinin and volatile oil in Artemisia annua,” Industrial Crops and Products, vol. 16, no. 3, pp. 217–224, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Kumar, S. K. Gupta, M. M. Gupta et al., “Method for maximization of artemisinin production of the plant Artemisia annua L,” Indian Patent No. NF-122/2000, US 09/538, 892, 2000, 6,393,763, 2002.
  9. P. C. Allen, J. Lydon, and H. D. Danforth, “Effects of components of Artemisia annua on Coccidia infections in Chickens,” Poultry Science, vol. 76, no. 8, pp. 1156–1163, 1997. View at Publisher · View at Google Scholar · View at Scopus
  10. H. A. Arab, S. Rahbari, A. Rassouli, M. H. Moslemi, and F. Khosravirad, “Determination of artemisinin in Artemisia sieberi and anticoccidial effects of the plant extract in broiler chickens,” Tropical Animal Health and Production, vol. 38, no. 6, pp. 497–503, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. S. Bhakuni, D. C. Jain, R. P. Sharma, and S. Kumar, “Secondary metabolites of Artemisia annua and their biological activity,” Current Science, vol. 80, no. 1, pp. 35–48, 2001. View at Google Scholar · View at Scopus
  12. T. Efferth, M. R. Romero, D. G. Wolf, T. Stamminger, J. J. G. Marin, and M. Marschall, “The antiviral activities of artemisinin and artesunate,” Clinical Infectious Diseases, vol. 47, no. 6, pp. 804–811, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. C. Beekman, P. K. Wierenga, H. J. Woerdenbag et al., “Artemisinin-derived sesquiterpene lactones as potential antitumour compounds: cytotoxic action against bone marrow and tumour cells,” Planta Medica, vol. 64, no. 7, pp. 615–619, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Oh, B. J. Kim, N. P. Singh, H. Lai, and T. Sasaki, “Synthesis and anti-cancer activity of covalent conjugates of artemisinin and a transferrin-receptor targeting peptide,” Cancer Letters, vol. 274, no. 1, pp. 33–39, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. A. Levy, L. F. Marins, and A. Sanchez, “Gene transfer technology in aquaculture,” Hydrobiologia, vol. 420, no. 1–3, pp. 91–94, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Mannan, N. Shaheen, W. Arshad, R. A. Qureshi, M. Zia, and B. Mirza, “Hairy roots induction and artemisinin analysis in Artemisia dubia and Artemisia indica,” African Journal of Biotechnology, vol. 7, no. 18, pp. 3288–3292, 2008. View at Google Scholar · View at Scopus
  17. X. C. He, M. Y. Zeng, G. F. Li, and Z. Liang, “Callus induction and regeneration of plantlets from Artemisia annua and changes of Qinghaosu contents,” Acta Botanica Sinica, vol. 25, no. 1, pp. 87–90, 1983. View at Google Scholar
  18. D. P. Fulzele, A. T. Sipahimalani, and M. R. Heble, “Tissue cultures of Artemisia annua: organogenesis and artemisinin production,” Phytotherapy Research, vol. 5, no. 4, pp. 149–153, 1991. View at Publisher · View at Google Scholar · View at Scopus
  19. M. B. Qin, G. Z. Li, H. C. Ye, and G. F. Li, “Induction of hairy root from Artemisia annua with Agrobacterium rhizogenes and its culture in vitro,” Acta Botanica Sinica, vol. 36, pp. 165–170, 1994. View at Google Scholar
  20. A. Giri, S. T. Ravindra, V. Dhingra, and M. L. Narasu, “Influence of different strains of Agrobacterium rhizogenes on induction of hairy roots and artemisinin production in Artemisia annua,” Current Science, vol. 81, no. 4, pp. 378–382, 2001. View at Google Scholar · View at Scopus
  21. B. M. Aryanti, T. M. Ermayanti, and I. Mariska, “Production of antileukemic agent in untransformed and transformed root cultures of Artemisia cina,” Annales Bogorienses, vol. 8, pp. 11–16, 2001. View at Google Scholar
  22. M. Zia and M. F. Chaudhary, “Effect of growth regulators and amino acids on artemisinin production in the callus of Artemisia absinthium,” Pakistan Journal of Botany, vol. 39, no. 3, pp. 799–805, 2007. View at Google Scholar · View at Scopus
  23. R. X. Tan, W. F. Zheng, and H. Q. Tang, “Biologically active substances from the genus Artemisia,” Planta Medica, vol. 64, no. 4, pp. 295–302, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Hsu, “The history of qing hao in the Chinese material medica,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 100, no. 6, pp. 505–508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Mannan, I. Ahmed, W. Arshad et al., “Survey of artemisinin production by diverse Artemisia species in northern Pakistan,” Malaria Journal, vol. 9, no. 1, article 310, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Suresh, K. Mruthunjaya, N. Paramakrishnan, and M. N. Naganandhini, “Determination of artemisinin in Artemisia abrotanum and Artemisia pallens by LC/MS method,” International Journal of Current Pharmaceutical Research, vol. 3, no. 1, pp. 49–52, 2011. View at Google Scholar
  27. A. G. Namdeo, K. R. Mahadik, and S. S. Kadam, “Antimalarial drug-Artemisia annua,” Pharmacognosy Magazine, vol. 2, no. 6, pp. 106–111, 2006. View at Google Scholar
  28. E.-M. B. El-Naggar, M. Azazi, E. Švajdlenka, and M. Žemlička, “Artemisinin from minor to major ingredient in Artemisia annua cultivated in Egypt,” Journal of Applied Pharmaceutical Science, vol. 3, no. 8, pp. 116–123, 2013. View at Publisher · View at Google Scholar · View at Scopus
  29. D. L. Klayman, A. J. Lin, N. Acton et al., “Isolation of artemisinin (qinghaosu) from Artemisia annua growing in the United States,” Journal of Natural Products, vol. 47, no. 4, pp. 715–717, 1984. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Gabriëls and J. Plaizier-Vercammen, “Development of a reversed-phase thin-layer chromatographic method for artemisinin and its derivatives,” Journal of Chromatographic Science, vol. 42, no. 7, pp. 341–347, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. M. Gupta, D. C. Jain, R. K. Verma, and A. P. Gupta, “A rapid analytical method for the estimation of artemisinin in Artemisia annua,” Journal of Medicinal and Aromatic plant sciences, vol. 18, no. 1, pp. 5–6, 1996. View at Google Scholar
  32. J. A. Marchese, V. L. G. Rehder, and A. Sartoratto, “Quantification of artemisinin in Artemisia annua L A comparison of thin layer chromatography with densitometric detection and high performance liquid chromatography with UV detection,” Revista Brasileira de Plantas Medicinais, vol. 4, pp. 81–87, 2001. View at Google Scholar
  33. M. Gabriëls and J. A. Plaizier-Vercammen, “Densitometric thin-layer chromatographic determination of artemisinin and its lipophilic derivatives, artemether and arteether,” Journal of Chromatographic Science, vol. 41, no. 7, pp. 359–366, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Bhandari, A. P. Gupta, B. Singh, and V. K. Kaul, “Simultaneous densitometric determination of artemisinin, artemisinic acid and arteannuin-B in Artemisia annua using reversed-phase thin layer chromatography,” Journal of Separation Science, vol. 28, no. 17, pp. 2288–2292, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. H. N. ElSohly, E. M. Croom, and M. A. ElSohly, “Analysis of the antimalarial sesquiterpene artemisinin in Artemisia annua by high-performance liquid chromatography (HPLC) with postcolumn derivatization and ultraviolet detection,” Pharmaceutical Research, vol. 4, no. 3, pp. 258–260, 1987. View at Publisher · View at Google Scholar · View at Scopus
  36. B. L. Singh, D. V. Singh, R. K. Verma, M. M. Gupta, D. C. Jain, and S. Kumar, “Simultaneous determination of antimalarial drugs using reversed phase high-performance liquid chromatography diode-array detection,” Journal of Medicinal and Aromatic Plant Sciences, vol. 22-23, no. 4A-1A, pp. 17–20, 2000. View at Google Scholar
  37. G.-P. Qian, Y.-W. Yang, and Q.-L. Ren, “Determination of artemisinin in Artemisia annua L. by reversed phase HPLC,” Journal of Liquid Chromatography & Related Technologies, vol. 28, no. 5, pp. 705–712, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Erdemoglu, I. Orhan, M. Kartal, N. Adýgüzel, and B. Bani, “Determination of artemisinin in selected Artemisia L. species of Turkey by reversed phase HPLC,” Records of Natural Products, vol. 1, no. 2-3, pp. 36–43, 2007. View at Google Scholar
  39. N. Acton, D. L. Klayman, and I. J. Rollman, “Reductive electrochemical HPLC assay for artemisinin (Qinghaosu),” Planta Medica, vol. 51, no. 5, pp. 445–446, 1985. View at Google Scholar · View at Scopus
  40. J. F. S. Ferreira, D. J. Charles, K. Wood, J. Janick, and J. E. Simon, “A comparison of gas chromatography and high performance liquid chromatography for artemisinin analyses,” Phytochemical Analysis, vol. 5, no. 3, pp. 116–120, 1994. View at Publisher · View at Google Scholar · View at Scopus
  41. B. A. Avery, K. K. Venkatesh, and M. A. Avery, “Rapid determination of artemisinin and related analogues using high-performance liquid chromatography and an evaporative light scattering detector,” Journal of Chromatography B: Biomedical Sciences and Applications, vol. 730, no. 1, pp. 71–80, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. X.-R. Hu and F.-H. She, “Determination of artemisinin content in Artemisia annua from different regions by HPLC-evaporative light scattering detection,” Xiandai Shipin Yu Yaopin Zazhi, vol. 16, pp. 34–36, 2006. View at Google Scholar
  43. C. A. Peng, J. F. S. Ferreira, and A. J. Wood, “Direct analysis of artemisinin from Artemisia annua L. using high-performance liquid chromatography with evaporative light scattering detector, and gas chromatography with flame ionization detector,” Journal of Chromatography A, vol. 1133, no. 1-2, pp. 254–258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. C.-Z. Liu, H.-Y. Zhou, and Y. Zhao, “An effective method for fast determination of artemisinin in Artemisia annua L. by high performance liquid chromatography with evaporative light scattering detection,” Analytica Chimica Acta, vol. 581, no. 2, pp. 298–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Amponsaa-Karikari, N. Kishikawa, Y. Ohba, K. Nakashim, and N. Kuroda, “Determination of artemisinin in human serum by high-performance liquid chromatography with on-line UV irradiation and peroxyoxalate chemiluminescence detection,” Biomedical Chromatography, vol. 20, no. 11, pp. 1157–1162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Xing, H. Yan, S. Zhang, G. Ren, and Y. Gao, “A high-performance liquid chromatography/tandem mass spectrometry method for the determination of artemisinin in rat plasma,” Rapid Communications in Mass Spectrometry, vol. 20, no. 9, pp. 1463–1468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Wang, C. Park, Q. Wu, and J. E. Simon, “Analysis of artemisinin in Artemisia annua L. by LC-MS with selected ion monitoring,” Journal of Agricultural and Food Chemistry, vol. 53, no. 18, pp. 7010–7013, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. B. Huang and C. Yao, “Determination of artemisinin by capillary electrophoresis with conductivity detection,” Fenxi Ceshi Xuebao, vol. 25, pp. 109–111, 2006. View at Google Scholar
  49. H. J. Woerdenbag, N. Pras, R. Bos, J. F. Visser, H. Hendriks, and T. M. Malingre, “Analysis of artemisinin and related sesquiterpenoids from Artemisia annua by combined gas chromatography-mass spectrometry,” Phytochemical Analysis, vol. 2, no. 5, pp. 215–219, 1991. View at Google Scholar · View at Scopus
  50. A. T. Sipahimalani, D. P. Fulzele, and M. R. Heble, “Rapid method for the detection and determination of artemisinin by gas chromatography,” Journal of Chromatography A, vol. 538, no. 2, pp. 452–455, 1991. View at Publisher · View at Google Scholar · View at Scopus
  51. J. F. S. Ferreira and J. Janick, “Immunoquantitative analysis of artemisinin from Artemisia annua using polyclonal antibodies,” Phytochemistry, vol. 41, no. 1, pp. 97–104, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. T. V. Sreevidya and B. Narayana, “Spectrophotometric determination of artemisinin and dihydroartemisinin,” Indian Journal of Chemical Technology, vol. 15, no. 1, pp. 59–62, 2008. View at Google Scholar
  53. P. Christen and J.-L. Veuthey, “New trends in extraction, identification and quantification of artemisinin and its derivatives,” Current Medicinal Chemistry, vol. 8, no. 15, pp. 1827–1839, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. J.-Y. Hao, W. Han, S.-D. Huang, B.-Y. Xue, and X. Deng, “Microwave-assisted extraction of artemisinin from Artemisia annua L,” Separation and Purification Technology, vol. 28, no. 3, pp. 191–196, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Kumar, S. Banerjee, S. Dwivedi et al., “Registration of Jeevanraksha and suraksha varieties of the antimalarial medicinal plant Artemisia annua,” Journal of Medicinal and Aromatic Plant Sciences, vol. 21, no. 1, pp. 47–48, 1999. View at Google Scholar
  56. Per Diemer (FAO consultant), WHO and EcoPort version by Peter Griffee (FAO), and Contributor: Peter Griffee, QA and TEM, “Artemisia annua; the plant, production and processing and medicinal applications,” 2013, http://www.mmv.org/sites/default/files/uploads/docs/artemisinin/2007_event/12_Diemer-Griffee_Artemisia_annuapaper.pdf.
  57. E. Hahn-Deinstrop, Applied Thin-Layer Chromatography: Best Practice and Avoidance of Mistakes, Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim, Germany, 2nd edition, 2007.
  58. H. Misra, B. K. Mehta, and D. C. Jain, “Comparison of extraction conditions and HPTLC–UV method for determination of quinine in different extracts of Cinchona Species bark,” Records of Natural Products, vol. 2, no. 4, pp. 107–115, 2008. View at Google Scholar
  59. H. Misra, D. Mehta, B. K. Mehta, M. Soni, and D. C. Jain, “Study of extraction and HPTLC - UV method for estimation of caffeine in marketed tea (Camellia sinensis) granules,” International Journal of Green Pharmacy, vol. 3, no. 1, pp. 47–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Kowalska, K. Kaczmarski, and W. Prus, “Handbook of thin-layer chromatography,” in Theory and Mechanism of Thin-Layer Chromatography, J. Sherma and B. Fried, Eds., chapter 2, pp. 47–80, Marcel Dekker, New York, NY, USA, 3rd edition, 2003. View at Google Scholar
  61. T. Halkina and J. Sherma, “Comparative evaluation of the performance of silica gel TLC plates and irregular and spherical-particle HPTLC plates,” Acta Chromatographica, no. 17, pp. 261–271, 2006. View at Google Scholar · View at Scopus
  62. Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, UK, 30th edition, 1993.
  63. E. Turk, “Phosgene from chloroform,” Chemical & Engineering News, vol. 76, no. 9, p. 6, 1998. View at Google Scholar
  64. K. E. Maudens, S. M. R. Wille, and W. E. Lambert, “Traces of phosgene in chloroform: consequences for extraction of anthracyclines,” Journal of Chromatography B, vol. 848, no. 2, pp. 384–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  65. X. Jiang, H. Zhang, M. Wang, and L. Zhang, “Comparison analysis of different parts and geographical origins from southwestern China on artemisinin content of Artemisia annua L,” Current Trends in Technology and Science, vol. 2, no. 4, pp. 293–297, 2013. View at Google Scholar
  66. N. Delabays, X. Simonnet, and M. Gaudin, “The genetics of artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars,” Current Medicinal Chemistry, vol. 8, no. 15, pp. 1795–1801, 2001. View at Publisher · View at Google Scholar · View at Scopus