Table of Contents
Dataset Papers in Physics
Volume 2013 (2013), Article ID 473294, 4 pages
http://dx.doi.org/10.1155/2013/473294
Dataset Paper

Temperature Evolution of Cluster Structures in Ethanol

1National Taras Shevchenko University of Kyiv, Glushkova Avenue 4, Kyiv 03187, Ukraine
2Vilnius University, Sauletekio 9-3, 10222 Vilnius, Lithuania

Received 13 April 2013; Accepted 7 May 2013

Academic Editors: L. Bernasconi and M. I. Trioni

Copyright © 2013 P. Golub et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. L. Boyd and R. J. Boyd, “A density functional study of methanol clusters,” Journal of Chemical Theory and Computation, vol. 3, no. 1, pp. 54–61, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. I. Yu. Doroshenko, O. I. Lizengevych, V. E. Pogorelov, and L. I. Savransky, “Associates of methanol molecules: quantum-chemical calculations of structure and vibrational spectra,” Ukrainian Journal of Physics, vol. 49, no. 6, pp. 540–544, 2004. View at Google Scholar
  3. R. Ludwig, “Isotopic quantum effects in liquid methanol,” ChemPhysChem, vol. 6, no. 7, pp. 1376–1380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Bako, P. Jedlovzky, and G. Palinkas, “Molecular clusters in liquid methanol: a reverse Monte Carlo study,” Journal of Molecular Liquids, vol. 87, no. 2, pp. 243–254, 2000. View at Google Scholar
  5. S. Kashtanov, A. Augustson, J. E. Rubensson et al., “Chemical and electronic structures of liquid methanol from X-ray emission spectroscopy and density functional theory,” Physical Review B, vol. 71, no. 10, pp. 1–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Tomsic and A. Jamnik, “Structural properties of pure simple alcohols from ethanol, propanol, butanol, pentanol, to hexanol: comparing Monte Carlo simulations with experimental SAXS data,” Journal of Physical Chemistry B, vol. 111, no. 7, pp. 1738–1751, 2007. View at Google Scholar
  7. A. Vrhovsek, O. Gereben, A. Jamnik, and L. Pusztai, “Hydrogen bonding and molecular aggregates in liquid methanol, ethanol, and 1-propanol,” Journal of Physical Chemistry B, vol. 115, no. 46, pp. 13473–13488, 2011. View at Google Scholar
  8. Y. J. Hu, H. B. Fu, and E. R. Bernstein, “Infrared plus vacuum ultraviolet spectroscopy of neutral and ionic ethanol monomers and clusters,” Journal of Chemical Physics, vol. 125, Article ID 154305, 2006. View at Publisher · View at Google Scholar
  9. C. J. Benmore and Y. L. Loh, “The structure of liquid ethanol: a neutron diffraction and molecular dynamics study,” Journal of Chemical Physics, vol. 112, no. 13, pp. 5877–5883, 2000. View at Google Scholar · View at Scopus
  10. J. Lehtola, M. Hakala, and K. Hämäläinen, “Structure of liquid linear alcohols,” Journal of Physical Chemistry B, vol. 114, no. 19, pp. 6426–6436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. I. M. Svishchev and P. G. Kusalik, “Structure in liquid methanol from spatial distribution functions,” The Journal of Chemical Physics, vol. 100, no. 7, pp. 5165–5171, 1994. View at Google Scholar · View at Scopus
  12. G. A. Pitsevich, I. Y. Doroshenko, V. Y. Pogorelov, V. Shablinskas, and V. Balevichus, “Structure and vibrational spectra of gauche- and trans-conformers of ethanol: Nonempirical anharmonic calculations and FTIR spectra in argon matrices,” Low Temperature Physics, vol. 39, article 389, 2013. View at Publisher · View at Google Scholar
  13. N. P. G. Roeges, A Guide To the Complete Interpretation of the Infrared Spectra of Organic Structures, John Wiley & Sons, New York, NY, USA, 1994.
  14. S. Coussan, Y. Bouteiller, J. P. Perchard, and W. Q. Zheng, “Rotational isomerism of ethanol and matrix isolation infrared spectroscopy,” Journal of Physical Chemistry A, vol. 102, no. 29, pp. 5789–5793, 1998. View at Google Scholar
  15. A. J. Barnes and H. E. Hallam, “Infra-red cryogenic studies. Part 5. Ethanol and ethanol-d argon matrices,” Transactions of the Faraday Society, vol. 66, pp. 1932–1940, 1970. View at Publisher · View at Google Scholar · View at Scopus
  16. J. R. Dunig, H. Deeb, I. D. Darkhalil, J. J. Klassen, T. K. Gounev, and A. Ganguly, “The r0 structural parameters, conformational stability, barriers to internal rotation, and vibrational assignments for trans and gauche ethanol,” Journal of Molecular Structure, vol. 985, no. 2-3, pp. 202–210, 2011. View at Google Scholar
  17. G. Pitsevich, I. Doroshenko, V. Pogorelov, V. Shablinskas, V. Balevichus, and N. Kozlovskaya, “Nonempiric anharmonic computations of IR spectra of ethanol conformers in B3LYP/-pVQZ approximation (stretch-vibrations),” The American Journal of Chemistry, vol. 2, no. 4, pp. 218–227, 2012. View at Google Scholar