Table of Contents
Dataset Papers in Pharmacology
Volume 2013 (2013), Article ID 698435, 14 pages
http://dx.doi.org/10.7167/2013/698435
Dataset Paper

Alterations of Hormone-Sensitive Adenylyl Cyclase System in the Tissues of Rats with Long-Term Streptozotocin Diabetes and the Influence of Intranasal Insulin

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez Avenue 44, St. Petersburg 194223, Russia

Received 31 May 2012; Accepted 19 July 2012

Academic Editors: T. H.-W. Huang, Y. Huang, W.-L. Lu, and Y. Uezono

Copyright © 2013 Alexander O. Shpakov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. C. Stiles and E. R. Seaquist, “Cerebral structural and functional changes in type 1 diabetes,” Minerva Medica, vol. 101, no. 2, pp. 105–114, 2010. View at Google Scholar · View at Scopus
  2. C. E. Tabit, W. B. Chung, N. M. Hamburg, and J. A. Vita, “Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications,” Reviews in Endocrine and Metabolic Disorders, vol. 11, no. 1, pp. 61–74, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. A. O. Shpakov, O. V. Chistiakova, K. V. Derkach, and V. M. Bondareva, “Hormonal signaling systems of the brain in diabetes mellitus,” in Neurodegenerative Diseases—Processes, Prevention, Protection and Monitoring, R. C. C. Chang, Ed., pp. 349–386, Intech Open Access Publisher, Rijeka, Croatia, 2011. View at Google Scholar
  4. V. M. Altan, E. Arioglu, S. Guner, and A. T. Ozcelikay, “The influence of diabetes on cardiac β-adrenoceptor subtypes,” Heart Failure Reviews, vol. 12, no. 1, pp. 58–65, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Wichelhaus, M. Russ, S. Petersen, and J. Eckel, “G protein expression and adenylate cyclase regulation in ventricular cardiomyocytes from STZ-diabetic rats,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 267, no. 2, pp. H548–H555, 1994. View at Google Scholar · View at Scopus
  6. S. Gando, Y. Hattori, Y. Akaishi, J. Nishihira, and M. Kanno, “Impaired contractile response to beta adrenoceptor stimulation in diabetic rat hearts: alterations in beta adrenoceptors-G protein-adenylate cyclase system and phospholamban phosphorylation,” Journal of Pharmacology and Experimental Therapeutics, vol. 282, no. 1, pp. 475–484, 1997. View at Google Scholar · View at Scopus
  7. L. P. Weber and K. M. Macleod, “Influence of streptozotocin diabetes on the α-1 adrenoceptor and associated G proteins in rat arteries,” Journal of Pharmacology and Experimental Therapeutics, vol. 283, no. 3, pp. 1469–1478, 1997. View at Google Scholar · View at Scopus
  8. A. O. Shpakov, L. A. Kuznetsova, S. A. Plesneva, I. A. Gur'ianov, and M. N. Pertseva, “Molecular causes of changes in sensitivity of adenylyl cyclase signaling system to biogenic amines in the heart muscle during experimental streptozotocin diabetes,” Tsitologiia., vol. 47, no. 6, pp. 540–548, 2005. View at Google Scholar · View at Scopus
  9. A. O. Shpakov, L. A. Kuznetsova, S. A. Plesneva et al., “Functional defects in adenylyl cyclase signaling mechanisms of insulin and relaxin in skeletal muscles of rat with streptozotocin type 1 diabetes,” Central European Journal of Biology, vol. 1, no. 4, pp. 530–544, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. O. Shpakov, V. M. Bondareva, and O. V. Chistyakova, “Functional state of adenylyl cyclase signaling system in reproductive tissues of rats with experimental type 1 diabetes,” Tsitologiya, vol. 52, no. 2, pp. 177–183, 2010. View at Google Scholar · View at Scopus
  11. U. D. Dinçer, K. R. Bidasee, S. Güner, A. Tay, A. T. Özçelikay, and V. M. Altan, “The effect of diabetes on expression of β1-, β2-, and β3-adrenoreceptors in rat hearts,” Diabetes, vol. 50, no. 2, pp. 455–461, 2001. View at Google Scholar · View at Scopus
  12. B. Savitha, B. Joseph, T. P. Kumar, and C. S. Paulose, “Acetylcholine and muscarinic receptor function in cerebral cortex of diabetic young and old male wistar rats and the role of muscarinic receptors in calcium release from pancreatic islets,” Biogerontology, vol. 11, no. 2, pp. 151–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. R. I. Henkin, “Intranasal insulin: from nose to brain,” Nutrition, vol. 26, no. 6, pp. 624–633, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Benedict, W. H. Frey, H. B. Schiöth, B. Schultes, J. Born, and M. Hallschmid, “Intranasal insulin as a therapeutic option in the treatment of cognitive impairments,” Experimental Gerontology, vol. 46, no. 2-3, pp. 112–115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Stockhorst, D. de Fries, H. J. Steingrueber, and W. A. Scherbaum, “Insulin and the CNS: effects on food intake, memory, and endocrine parameters and the role of intranasal insulin administration in humans,” Physiology and Behavior, vol. 83, no. 1, pp. 47–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. A. O. Shpakov, O. V. Chistyakova, K. V. Derkach, I. V. Moiseyuk, and V. M. Bondareva, “Intranasal insulin affects adenylyl cyclase system in rat tissues in neonatal diabetes,” Central European Journal of Biology, vol. 7, no. 1, pp. 33–47, 2012. View at Publisher · View at Google Scholar
  17. E. S. Khafagy, M. Morishita, Y. Onuki, and K. Takayama, “Current challenges in non-invasive insulin delivery systems: a comparative review,” Advanced Drug Delivery Reviews, vol. 59, no. 15, pp. 1521–1546, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. J. Francis, J. A. Martinez, W. Q. Liu et al., “Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy,” Brain, vol. 131, no. 12, pp. 3311–3334, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. “Guidelines for the treatment of animals in behavior research and teaching,” Animal Behaviour, vol. 71, no. 1, pp. 245–253, 2006. View at Publisher · View at Google Scholar
  20. R. G. Thorne, G. J. Pronk, V. Padmanabhan, and W. H. Frey II, “Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration,” Neuroscience, vol. 127, no. 2, pp. 481–496, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. S. P. Baker and L. T. Potter, “A minor component of the binding of [3H]guanyl-5′-yl imidodiphosphate to cardiac membranes associated with the activation of adenylate cyclase,” The Journal of Biological Chemistry, vol. 256, no. 15, pp. 7925–7931, 1981. View at Google Scholar · View at Scopus
  22. A. O. Shpakov, E. A. Shpakova, I. I. Tarasenko, K. V. Derkach, and G. P. Vlasov, “The peptides mimicking the third intracellular loop of 5-hydroxytryptamine receptors of the types 1B and 6 selectively activate G proteins and receptor-specifically inhibit serotonin signaling via the adenylyl cyclase system,” International Journal of Peptide Research and Therapeutics, vol. 16, no. 2, pp. 95–105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. O. Shpakov, E. A. Shpakova, I. I. Tarasenko et al., “The influence of peptides corresponding to the third intracellular loop of luteinizing hormone receptor on basal and hormone-stimulated activity of the adenylyl cyclase signaling system,” Global Journal of Biochemistry, vol. 2, no. 1, pp. 59–73, 2011. View at Google Scholar
  24. O. V. Chistyakova, V. M. Bondareva, V. N. Shipilov, I. B. Sukhov, and A. O. Shpakov, “A positive effect of intranasal insulin on spatial memory in rats with neonatal diabetes mellitus,” Endocrinology Studies, vol. 1, article e16, 2011. View at Google Scholar
  25. A. O. Shpakov, L. A. Kuznetsova, S. A. Plesneva, I. A. Gur'ianov, G. P. Vlasov, and M. N. Pertseva, “Identifications of disturbances in hormone-sensitive adenylyl cyclase system in the tissues of rats with types 1 and 2 diabetes using functional probes and synthetic peptides,” Tekhnologii Zhivykh Sistem, vol. 4, pp. 96–108, 2005. View at Google Scholar
  26. K. R. Bidasee, H. Zheng, C. H. Shao, S. K. Parbhu, G. J. Rozanski, and K. P. Patel, “Exercise training initiated after the onset of diabetes preserves myocardial function: effects on expression of β-adrenoceptors,” Journal of Applied Physiology, vol. 105, no. 3, pp. 907–914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. U. D. Dinçer, A. Onay, N. Ari, A. T. Özçelikay, and V. M. Altan, “The effects of diabetes on β-adrenoceptor mediated responsiveness of human and rat atria,” Diabetes Research and Clinical Practice, vol. 40, no. 2, pp. 113–122, 1998. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Marcos, M. García-Alloza, F. J. Gil-Bea et al., “Involvement of an altered 5-HT6 receptor function in behavioral symptoms of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 14, no. 1, pp. 43–50, 2008. View at Google Scholar · View at Scopus
  29. K. Tully and V. Y. Bolshakov, “Emotional enhancement of memory: how norepinephrine enables synaptic plasticity,” Molecular Brain, vol. 3, no. 1, pp. 15–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. D. Mooradian and P. J. Scarpace, “β-Adrenergic receptor activity of cerebral microvessels in experimental diabetes mellitus,” Brain Research, vol. 583, no. 1-2, pp. 155–160, 1992. View at Google Scholar · View at Scopus
  31. D. Reglodi, P. Kiss, A. Lubics, and A. Tamas, “Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo,” Current Pharmaceutical Design, vol. 17, no. 10, pp. 962–972, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Benedict, M. Hallschmid, A. Hatke et al., “Intranasal insulin improves memory in humans,” Psychoneuroendocrinology, vol. 29, no. 10, pp. 1326–1334, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. M. P. Abbracchio, M. Di Luca, A. M. Di Giulio, F. Cattabeni, B. Tenconi, and A. Gorio, “Denervation and hyperinnervation in the nervous system of diabetic animals: III. Functional alterations of G proteins in diabetic encephalopathy,” Journal of Neuroscience Research, vol. 24, no. 4, pp. 517–523, 1989. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Robinson, A. Krishnakumar, and C. S. Paulose, “Enhanced dopamine D1 and D2 receptor gene expression in the hippocampus of hypoglycaemic and diabetic rats,” Cellular and Molecular Neurobiology, vol. 29, no. 3, pp. 365–372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. J. Carmena, C. Clemente, L. G. Guijarro, and J. C. Prieto, “The effect of streptozotocin diabetes on the vasoactive intestinal peptide receptor/effector system in membranes from rat ventral prostate,” Endocrinology, vol. 131, no. 4, pp. 1993–1998, 1992. View at Publisher · View at Google Scholar · View at Scopus
  36. M. S. Rodriguez-Pena, L. G. Guijarro, M. G. Juarranz et al., “Analysis of vasoactive intestinal peptide receptors and the G protein regulation of adenylyl cyclase in seminal vesicle membranes from streptozotocin-diabetic rats,” Cellular Signalling, vol. 6, no. 2, pp. 147–156, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. J. X. Li and C. P. France, “Food restriction and streptozotocin treatment decrease 5-HT1A and 5-HT2A receptor-mediated behavioral effects in rats,” Behavioural Pharmacology, vol. 19, no. 4, pp. 292–297, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Lanfumey and M. Hamon, “5-HT1 receptors,” Current Drug Targets: CNS and Neurological Disorders, vol. 3, no. 1, pp. 1–10, 2004. View at Google Scholar · View at Scopus
  39. J. F. Bruno, Y. Xu, J. Song, and M. Berelowitz, “Pituitary and hypothalamic somatostatin receptor subtype messenger ribonucleic acid expression in the food-deprived and diabetic rat,” Endocrinology, vol. 135, no. 5, pp. 1787–1792, 1994. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Gao, Y. B. Oh, A. Shah, W. H. Park, and S. H. Kim, “Suppression of ANP secretion by somatostatin through somatostatin receptor type 2,” Peptides, vol. 32, no. 6, pp. 1179–1186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. J. T. Yue, E. Burdett, D. H. Coy, A. Giacca, S. Efendic, and M. Vranic, “Somatostatin receptor type 2 antagonism improves glucagon and corticosterone counterregulatory responses to hypoglycemia in streptozotocin-induced diabetic rats,” Diabetes, vol. 61, no. 1, pp. 197–207, 2012. View at Publisher · View at Google Scholar
  42. G. M. Portela-Gomes, L. Grimelius, P. Westermark, and M. Stridsberg, “Somatostatin receptor subtypes in human type 2 diabetic islets,” Pancreas, vol. 39, no. 6, pp. 836–842, 2010. View at Publisher · View at Google Scholar · View at Scopus