Table of Contents Author Guidelines Submit a Manuscript
Diagnostic and Therapeutic Endoscopy
Volume 2013 (2013), Article ID 250641, 5 pages
Research Article

Endomicroscopic Imaging of COX-2 Activity in Murine Sporadic and Colitis-Associated Colorectal Cancer

Department of Medicine 1, University of Erlangen-Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany

Received 27 August 2012; Accepted 26 December 2012

Academic Editor: Helmut Neumann

Copyright © 2013 Sebastian Foersch et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Although several studies propose a chemopreventive effect of aspirin for colorectal cancer (CRC) development, the general use of aspirin cannot be recommended due to its adverse side effects. As the protective effect of aspirin has been associated with an increased expression of COX-2, molecular imaging of COX-2, for instance, during confocal endomicroscopy could enable the identification of patients who would possibly benefit from aspirin treatment. In this pilot trial, we used a COX-2-specific fluorescent probe for detection of colitis-associated and sporadic CRC in mice using confocal microscopy. Following the injection of the COX-2 probe into tumor-bearing APCmin mice or mice exposed to the AOM + DSS model of colitis-associated cancer, the tumor-specific upregulation of COX-2 could be validated with in vivo fluorescence imaging. Subsequent confocal imaging of tumor tissue showed an increased number of COX-2 expressing cells when compared to the normal mucosa of healthy controls. COX-2-expression was detectable with subcellular resolution in tumor cells and infiltrating stroma cells. These findings pose a proof of concept and suggest the use of CLE for the detection of COX-2 expression during colorectal cancer surveillance endoscopy. This could improve early detection and stratification of chemoprevention in patients with CRC.