Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011 (2011), Article ID 379176, 8 pages
http://dx.doi.org/10.4061/2011/379176
Research Article

Improved Laccase Production by Trametes pubescens MB89 in Distillery Wastewaters

1Product Recovery, LanzaTech, 24 Balfour Road, Auckland 1052, New Zealand
2Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P. O. Box 94, Grahamstown 6140, South Africa

Received 17 April 2011; Revised 25 July 2011; Accepted 9 August 2011

Academic Editor: Alane Beatriz Vermelho

Copyright © 2011 P. J. Strong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Gianfreda, F. Xu, and J. M. Bollag, “Laccases: a useful group of oxidoreductive enzymes,” Bioremediation Journal, vol. 3, no. 1, pp. 1–25, 1999. View at Google Scholar · View at Scopus
  2. P. J. Strong and H. Claus, “Laccase: a review of its past and its future in bioremediation,” Critical Reviews in Environmental Science and Technology, vol. 41, no. 4, pp. 373–434, 2011. View at Publisher · View at Google Scholar
  3. S. R. Couto, M. Gundín, M. Lorenzo, and M. Á. Sanromán, “Screening of supports and inducers for laccase production by Trametes versicolor in semi-solid-state conditions,” Process Biochemistry, vol. 38, no. 2, pp. 249–255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Gómez, M. Pazos, S. R. Couto, and M. A. Sanromán, “Chestnut shell and barley bran as potential substrates for laccase production by Coriolopsis rigida under solid-state conditions,” Journal of Food Engineering, vol. 68, no. 3, pp. 315–319, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. F. Osma, J. L. Toca Herrera, and S. Rodríguez Couto, “Banana skin: a novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration,” Dyes and Pigments, vol. 75, no. 1, pp. 32–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. F. Osma, V. Saravia, J. L. T. Herrera, and S. R. Couto, “Mandarin peelings: the best carbon source to produce laccase by static cultures of Trametes pubescens,” Chemosphere, vol. 67, no. 8, pp. 1677–1680, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Rosales, S. R. Couto, and M. A. Sanromán, “Reutilisation of food processing wastes for production of relevant metabolites: application to laccase production by Trametes hirsuta,” Journal of Food Engineering, vol. 66, no. 4, pp. 419–423, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Rodríguez Couto, E. López, and M. A. Sanromán, “Utilisation of grape seeds for laccase production in solid-state fermentors,” Journal of Food Engineering, vol. 74, no. 2, pp. 263–267, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. P. J. Strong and J. E. Burgess, “Fungal and enzymatic remediation of a wine lees and five wine-related distillery wastewaters,” Bioresource Technology, vol. 99, no. 14, pp. 6134–6142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. K. L. Shuttleworth and J. M. Bollag, “Soluble and immobilized laccase as catalysts for the transformation of substituted phenols,” Enzyme and Microbial Technology, vol. 8, no. 3, pp. 171–177, 1986. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. C. R. Alves, E. Record, A. Lomascolo et al., “Highly efficient production of laccase by the basidiomycete Pycnoporus cinnabarinus,” Applied and Environmental Microbiology, vol. 70, no. 11, pp. 6379–6384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Galhaup, S. Goller, C. K. Peterbauer, J. Strauss, and D. Haltrich, “Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions,” Microbiology, vol. 148, no. 7, pp. 2159–2169, 2002. View at Google Scholar · View at Scopus
  13. C. Galhaup, H. Wagner, B. Hinterstoisser, and D. Haltrich, “Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens,” Enzyme and Microbial Technology, vol. 30, no. 4, pp. 529–536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. S. Revankar and S. S. Lele, “Increased production of extracellular laccase by the white rot fungus Coriolus versicolor MTCC 138,” World Journal of Microbiology and Biotechnology, vol. 22, no. 9, pp. 921–926, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Fåhraeus and B. Reinhammar, “Large scale production and purification of laccase from cultures of the fungus Polyporus versicolor and some properties of laccase A,” Acta chemica Scandinavica, vol. 21, no. 9, pp. 2367–2378, 1967. View at Google Scholar · View at Scopus
  16. S. B. Pointing, E. B. G. Jones, and L. L. P. Vrijmoed, “Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture,” Mycologia, vol. 92, no. 1, pp. 139–144, 2000. View at Google Scholar · View at Scopus
  17. P. J. Collins and A. D. W. Dobson, “Regulation of laccase gene transcription in Trametes versicolor,” Applied and Environmental Microbiology, vol. 63, no. 9, pp. 3444–3450, 1997. View at Google Scholar · View at Scopus
  18. F. R. Van Heerden, B. E. Van Wyk, A. M. Viljoen, and P. A. Steenkamp, “Phenolic variation in wild populations of Aspalathus linearis (rooibos tea),” Biochemical Systematics and Ecology, vol. 31, no. 8, pp. 885–895, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Rabe, J. A. Steenkamp, E. Joubert, J. F. W. Burger, and D. Ferreira, “Phenolic metabolites from rooibos tea (Aspalathus linearis),” Phytochemistry, vol. 35, no. 6, pp. 1559–1565, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Xu, R. C. Sun, J. X. Sun, C. F. Liu, B. H. He, and J. S. Fan, “Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse,” Analytica Chimica Acta, vol. 552, no. 1-2, pp. 207–217, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. D. T. D'Souza, R. Tiwari, A. K. Sah, and C. Raghukumar, “Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes,” Enzyme and Microbial Technology, vol. 38, no. 3-4, pp. 504–511, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Crestini, A. D'Annibale, and G. Giovannozzi-Sermanni, “Aqueous plant extracts as stimulators of laccase production in liquid cultures of Lentinus edodes,” Biotechnology Techniques, vol. 10, no. 4, pp. 243–248, 1996. View at Google Scholar · View at Scopus
  23. G. Fåhraeus, V. Tullander, and H. Ljunggren, “Production of high laccase yields in cultures of fungi,” Physiologia Plantarum, vol. 11, no. 3, pp. 631–643, 1958. View at Google Scholar
  24. A. Lomascolo, E. Record, I. Herpoël-Gimbert et al., “Overproduction of laccase by a monokaryotic strain of Pycnoporus cinnabarinus using ethanol as inducer,” Journal of Applied Microbiology, vol. 94, no. 4, pp. 618–624, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. J. C. Meza, R. Auria, A. Lomascolo, J. C. Sigoillot, and L. Casalot, “Role of ethanol on growth, laccase production and protease activity in Pycnoporus cinnabarinus ss3,” Enzyme and Microbial Technology, vol. 41, no. 1-2, pp. 162–168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. Bollag and A. Leonowicz, “Comparative studies of extracellular fungal laccases,” Applied and Environmental Microbiology, vol. 48, no. 4, pp. 849–854, 1984. View at Google Scholar · View at Scopus
  27. A. P. M. Tavares, M. A. Z. Coelho, J. A. P. Coutinho, and A. M. R. B. Xavier, “Laccase improvement in submerged cultivation: induced production and kinetic modelling,” Journal of Chemical Technology and Biotechnology, vol. 80, no. 6, pp. 669–676, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Eggert, U. Temp, J. F. D. Dean, and K. E. L. Eriksson, “A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase,” FEBS Letters, vol. 391, no. 1-2, pp. 144–148, 1996. View at Publisher · View at Google Scholar · View at Scopus
  29. P. J. Strong and J. E. Burgess, “Bioremediation of a wine distillery wastewater using white rot fungi and the subsequent production of laccase,” in Water Science and Technology, R. Chamy, G. Ruiz, and M. Carballa, Eds., pp. 179–186, 2007. View at Google Scholar
  30. M. T. Moreira, C. Palma, G. Feijoo, and J. M. Lema, “Strategies for the continuous production of ligninolytic enzymes in fixed and fluidised bed bioreactors,” Journal of Biotechnology, vol. 66, no. 1, pp. 27–39, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Neifar, A. Kamoun, A. Jaouani et al., “Application of Asymetrical and Hoke designs for optimization of laccase production by the white-rot fungus Fomes fomentarius in solid-state fermentation,” Enzyme Research, vol. 2011, Article ID 368525, 12 pages, 2011. View at Publisher · View at Google Scholar