Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2011 (2011), Article ID 796394, 6 pages
http://dx.doi.org/10.4061/2011/796394
Research Article

Improvement of Phytase Activity by a New Saccharomyces cerevisiae Strain Using Statistical Optimization

Food Science Department, Faculty of Food Engineering, Campinas State University (UNICAMP), Monteiro Lobato Street 70, 13083 970 Campinas, SP, Brazil

Received 21 March 2011; Revised 18 June 2011; Accepted 21 June 2011

Academic Editor: Alane Beatriz Vermelho

Copyright © 2011 Edi Franciele Ries and Gabriela Alves Macedo. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Pandey, G. Szakacs, C. R. Soccol, J. A. Rodriguez-Leon, and V. T. Soccol, “Production, purification and properties of microbial phytases,” Bioresource Technology, vol. 77, no. 3, pp. 203–214, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Vats and U. C. Banerjee, “Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview,” Enzyme and Microbial Technology, vol. 35, no. 1, pp. 3–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Casey and G. Walsh, “Identification and characterization of a phytase of potential commercial interest,” Journal of Biotechnology, vol. 110, no. 3, pp. 313–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. G. A. Walsh, R. F. Power, and D. R. Headon, “Enzymes in the animal-feed industry,” Trends in Food Science and Technology, vol. 5, no. 3, pp. 81–87, 1994. View at Google Scholar · View at Scopus
  5. S. J. Howson and R. P. Davis, “Production of phytate-hydrolysing enzyme by some fungi,” Enzyme and Microbial Technology, vol. 5, no. 5, pp. 377–382, 1983. View at Google Scholar · View at Scopus
  6. U. Konietzny and R. Greiner, “Molecular and catalytic properties of phytate-degrading enzymes (phytases),” International Journal of Food Science and Technology, vol. 37, no. 7, pp. 791–812, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. P. H. Selle and V. Ravindran, “Microbial phytase in poultry nutrition,” Animal Feed Science and Technology, vol. 135, no. 1-2, pp. 1–41, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Casey and G. Walsh, “Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142,” Bioresource Technology, vol. 86, no. 2, pp. 183–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Sunitha, J. K. Lee, and T. K. Oh, “Optimization of medium components for phytase production by Escherichia coli using response surface methodology,” Bioprocess Engineering, vol. 21, no. 6, pp. 477–481, 1999. View at Publisher · View at Google Scholar
  10. A. Vohra and T. Satyanarayana, “Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala,” Process Biochemistry, vol. 37, no. 9, pp. 999–1004, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Bogar, G. Szakacs, J. C. Linden, A. Pandey, and R. P. Tengerdy, “Optimization of phytase production by solid substrate fermentation,” Journal of Industrial Microbiology and Biotechnology, vol. 30, no. 3, pp. 183–189, 2003. View at Google Scholar · View at Scopus
  12. B. S. Chadha, G. Harmeet, M. Mandeep, H. S. Saini, and N. Singh, “Phytase production by the thermophilic fungus Rhizomucor pusillus,” World Journal of Microbiology & Biotechnology, vol. 20, no. 1, pp. 105–109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Kaur and T. Satyanarayana, “Production of cell-bound phytase by Pichia anomala in an economical cane molasses medium: optimization using statistical tools,” Process Biochemistry, vol. 40, no. 9, pp. 3095–3102, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Singh and T. Satyanarayana, “A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium,” Journal of Applied Microbiology, vol. 101, no. 2, pp. 344–352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Singh and T. Satyanarayana, “Improved phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation due to statistical optimization,” Bioresource Technology, vol. 99, no. 4, pp. 824–830, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. X. Y. Li, Z. Q. Liu, and Z. M. Chi, “Production of phytase by a marine yeast Kodamaea ohmeri BG3 in an oats medium: optimization by response surface methodology,” Bioresource Technology, vol. 99, no. 14, pp. 6386–6390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Segueilha, C. Lambrechts, H. Boze, G. Moulin, and P. Galzy, “Purification and properties of the phytase from Schwanniomyces castellii,” Journal of Fermentation and Bioengineering, vol. 74, no. 1, pp. 7–11, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Lambrechts, H. Boze, L. Segueilha, G. Moulin, and P. Galzy, “Influence of culture conditions on the biosynthesis of Schwanniomyces castelli phytase,” Biotechnology Letters, vol. 15, no. 4, pp. 399–404, 1993. View at Google Scholar · View at Scopus
  19. K. Sano, H. Fukuhara, and Y. Nakamura, “Phytase of the yeast Arxula adeninivorans,” Biotechnology Letters, vol. 21, no. 1, pp. 33–38, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Vohra and T. Satyanarayana, “Phytase production by the yeast, Pichia anomala,” Biotechnology Letters, vol. 23, no. 7, pp. 551–554, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. A. F. Mayer, K. Hellmuth, H. Schlieker et al., “An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha,” Biotechnology and Bioengineering, vol. 63, no. 3, pp. 373–381, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Han, D. B. Wilson, and X. G. Lei, “Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae,” Applied and Environmental Microbiology, vol. 65, no. 5, pp. 1915–1918, 1999. View at Google Scholar · View at Scopus
  23. Y. Han and X. G. Lei, “Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris,” Archives of Biochemistry and Biophysics, vol. 364, no. 1, pp. 83–90, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Stockmann, M. Losen, U. Dahlems, C. Knocke, G. Gellisse, and J. Buchs, “Effect of oxygen supply on passaging, stabilizing and srening of recombinant Hansenula polymorpha production strains in test tube cultures,” FEMS Yeast Research, vol. 4, pp. 195–205, 2003. View at Google Scholar
  25. H. Huang, L. Huiying, P. Yang et al., “A novel phytase with preferable characteristics from Yersinia intermedia,” Biochemical and Biophysical Research Communications, vol. 350, no. 4, pp. 884–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Guo, Y. P. Zhuang, J. Chu et al., “Production and purification of a novel thermostable phytase by Pichia pastoris FPHY34,” Process Biochemistry, vol. 42, no. 12, pp. 1660–1665, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. H. K. Jung, C. D. Park, D. H. Bae, and J. H. Hong, “Isolation of alcohol-tolerant amylolytic Saccharomyces cerevisiae and its application to alcohol fermentation,” Food Science and Biotechnology, vol. 17, no. 6, pp. 1160–1164, 2008. View at Google Scholar · View at Scopus
  28. S. D. Kim, M. K. Kim, C. J. Woo, C. H. Rhee, and S. H. Lee, “Characterization of psychrophilic yeast in Kimchi,” Food Science and Biotechnology, vol. 9, pp. 277–279, 2000. View at Google Scholar
  29. N. R. Nayini and P. Markakis, “The phytase of yeast,” Lebensmittel Wissenschaft & Technologie, vol. 17, no. 1, pp. 24–26, 1984. View at Google Scholar
  30. M. Jin-In, S. Won-Seo, D. C. Kim, and N. Soon-Oh, “Purification and biochemical properties of an extracellular acid phytase produced by the Saccharomyces cerevisiae CY strain,” Process Biochemistry, vol. 44, no. 1, pp. 122–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. E. F. Ries and G. A. Macedo, “Progressive screening of thermostable yeasts for phytase production,” Food Science and Biotechnology, vol. 18, pp. 655–660, 2009. View at Google Scholar
  32. M. Shimizu, “Purification and characterization of Phytase from Bacillus subtilis (natto) N-77,” Bioscince Biotechnology and Biochemistry, vol. 56, pp. 1266–1269, 1992. View at Google Scholar
  33. B. Bogar, G. Szakacs, A. Pandey, S. Abdulhameed, J. C. Linden, and R. P. Tengerdy, “Production of phytase by Mucor racemosus in solid-state fermentation,” Biotechnology Progress, vol. 19, no. 2, pp. 312–319, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Roopesh, S. Ramachandran, K. M. Nampoothiri, G. Szakacs, and A. Pandey, “Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus,” Bioresource Technology, vol. 97, no. 3, pp. 506–511, 2006. View at Publisher · View at Google Scholar · View at Scopus