Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2012 (2012), Article ID 173831, 13 pages
http://dx.doi.org/10.1155/2012/173831
Research Article

Kinetic Analysis of Guanidine Hydrochloride Inactivation of β-Galactosidase in the Presence of Galactose

1Department of Chemistry, University of Idaho, 875 Perimeter Drive, MS 2343, Moscow, ID 83844-2343, USA
2Department of Biochemistry, University of Nigeria, Nsukka, Enugu State 410001, Nigeria

Received 28 April 2012; Revised 28 July 2012; Accepted 29 July 2012

Academic Editor: Joaquim Cabral

Copyright © 2012 Charles O. Nwamba and Ferdinand C. Chilaka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. C. Price, “Conformational issues in the characterization of proteins,” Biotechnology and Applied Biochemistry, vol. 31, no. 1, pp. 29–40, 2000. View at Google Scholar · View at Scopus
  2. M. S. Cheung, L. L. Chavez, and J. N. Onuchic, “The energy landscape for protein folding and possible connections to function,” Polymer, vol. 45, no. 2, pp. 547–555, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Samiotakis, P. Wittung-Stafshede, and M. S. Cheung, “Folding, stability and shape of proteins in crowded environments: experimental and computational approaches,” International Journal of Molecular Sciences, vol. 10, no. 2, pp. 572–588, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. C. Prentiss, D. J. Wales, and P. G. Wolynes, “The energy landscape, folding pathways and the kinetics of a knotted protein,” PLoS Computational Biology, vol. 6, no. 7, Article ID e1000835, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Schug and J. N. Onuchic, “From protein folding to protein function and biomolecular binding by energy landscape theory,” Current Opinion in Pharmacology, vol. 10, no. 6, pp. 709–714, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. T. Oakley, D. J. Wales, and R. L. Johnston, “The effect of nonnative interactions on the energy landscapes of frustrated model proteins,” Journal of Atomic, Molecular, and Optical Physics, vol. 2012, Article ID 192613, 9 pages, 2012. View at Publisher · View at Google Scholar
  7. C. J. Tsai, B. Ma, Y. Y. Sham, S. Kumar, and R. Nussinov, “Structured disorder and conformational selection,” Proteins: Structure, Function and Genetics, vol. 44, no. 4, pp. 418–427, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. D. D. Boehr, D. McElheny, H. J. Dyson, and P. E. Wrightt, “The dynamic energy landscape of dihydrofolate reductase catalysis,” Science, vol. 313, no. 5793, pp. 1638–1642, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. E. Freire, “The thermodynamic linkage between protein structure, stability and function,” in Protein Structure, Stability and Folding, Methods in Molecular Biology, K. P. Murphy, Ed., vol. 168, pp. 37–68, Humana Press, Totowa, NJ, USA, 2000. View at Google Scholar
  10. A. Ben-Naim, “Levinthal’s paradox revisted, and dismissed,” Open Journal of Biophysics, vol. 2, no. 2, pp. 23–32, 2012. View at Publisher · View at Google Scholar
  11. M. Niggemann and B. Steipe, “Exploring local and non-local interactions for protein stability by structural motif engineering,” Journal of Molecular Biology, vol. 296, no. 1, pp. 181–195, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. A. A. Moosavi-Movahedi, K. Nazari, and A. A. Saboury, “Thermodynamics of denaturation of horseradish peroxidase with sodium n-dodecyl sulphate and n-dodecyl trimethylammonium bromide,” Colloids and Surfaces B, vol. 9, no. 3-4, pp. 123–130, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. A. K. Bordbar, A. Nasehzadeh, D. Ajloo et al., “Thermodynamic elucidation of binding isotherms for hemoglobin & globin of human and bovine upon interaction with dodecyl trimethyl ammonium bromide,” Bulletin of the Korean Chemical Society, vol. 23, no. 8, pp. 1073–1077, 2002. View at Google Scholar · View at Scopus
  14. A. K. Bordbar, A. A. Moosavi-Movahedi, and M. K. Amini, “A microcalorimetry and binding study on interaction of dodecyl trimethylammonium bromide with wigeon hemoglobin,” Thermochimica Acta, vol. 400, no. 1-2, pp. 95–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. L. J. Lapidus, W. A. Eaton, and J. Hofrichter, “Measuring dynamic flexibility of the coil state of a helix-forming peptide,” Journal of Molecular Biology, vol. 319, no. 1, pp. 19–25, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. L. J. Lapidus, P. J. Steinbach, W. A. Eaton, A. Szabo, and J. Hofrichter, “Effects of chain stiffness on the dynamics of loop formation in polypeptides. Appendix: testing a 1-dimensional diffusion model for peptide dynamics,” Journal of Physical Chemistry B, vol. 106, no. 44, pp. 11628–11640, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Muñoz, “Conformational dynamics and ensembles in protein folding,” Annual Review of Biophysics and Biomolecular Structure, vol. 36, pp. 395–412, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. I. Zavodszky and L. A. Kuhn, “Side-chain flexibility in protein-ligand binding: the minimal rotation hypothesis,” Protein Science, vol. 14, no. 4, pp. 1104–1114, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Kumar, B. Ma, C. J. Tsai, N. Sinha, and R. Nussinov, “Folding and binding cascades: dynamic landscapes and population shifts,” Protein Science, vol. 9, no. 1, pp. 10–19, 2000. View at Google Scholar · View at Scopus
  20. J. Foote and C. Milstein, “Conformational isomerism and the diversity of antibodies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 22, pp. 10370–10374, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Sasso, I. Protasevich, R. Gilli, A. Makarov, and C. Briand, “Thermal denaturation of bacterial and bovine dihydrofolate reductases and their complexes with NADPH, trimethoprim and methotrexate,” Journal of Biomolecular Structure and Dynamics, vol. 12, no. 5, pp. 1023–1032, 1995. View at Google Scholar · View at Scopus
  22. Y. Qu, C. L. Bolen, and D. W. Bolen, “Osmolyte-driven contraction of a random coil protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 16, pp. 9268–9273, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. F. C. Chilaka and C. O. Nwamba, “Kinetic analysis of urea-inactivation of β-galactosidase in the presence of galactose,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 23, no. 1, pp. 7–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. F. C. Chilaka, C. Okeke, and E. Adaikpoh, “Ligand-induced thermal stability in β-galactosidase from the seeds of the black bean, Kestingeilla geocarpa,” Process Biochemistry, vol. 38, no. 2, pp. 143–149, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Y. Chou and G. D. Fasman, “Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins,” Biochemistry, vol. 13, no. 2, pp. 211–222, 1974. View at Google Scholar · View at Scopus
  26. P. Y. Chou and G. D. Fasman, “Prediction of protein conformation,” Biochemistry, vol. 13, no. 2, pp. 222–245, 1974. View at Google Scholar · View at Scopus
  27. W. X. Tian and C. L. Tsou, “Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier,” Biochemistry, vol. 21, no. 5, pp. 1028–1032, 1982. View at Google Scholar · View at Scopus
  28. J. Xiao, S. J. Liang, and C. L. Tsou, “Inactivation before significant conformational change during denaturation of papain by guanidine hydrochloride,” Biochimica et Biophysica Acta, vol. 1164, no. 1, pp. 54–60, 1993. View at Publisher · View at Google Scholar · View at Scopus
  29. Z. X. Wang, J. W. Wu, and C. L. Tsou, “The inactivation kinetics of papain by guanidine hydrochloride: a re-analysis,” Biochimica et Biophysica Acta, vol. 1388, no. 1, pp. 84–92, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  31. A. R. Fersht, “Optimization of rates of protein folding: the nucleation-condensation mechanism and its implications,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 24, pp. 10869–10873, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. D. W. Miller and K. A. Dill, “Ligand binding to proteins: the binding landscape model,” Protein Science, vol. 6, no. 10, pp. 2166–2179, 1997. View at Google Scholar · View at Scopus
  33. B. Ma and R. Nussinov, “Energy landscape and dynamics of the β-hairpin G peptide and its isomers: topology and sequences,” Protein Science, vol. 12, no. 9, pp. 1882–1893, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. V. Prakash, C. Loucheux, S. Scheufele, M. J. Gorbunoff, and S. N. Timasheff, “Interactions of proteins with solvent components in 8 M urea,” Archives of Biochemistry and Biophysics, vol. 210, no. 2, pp. 455–464, 1981. View at Google Scholar · View at Scopus
  35. R. S. Spolar and M. T. Record Jr., “Coupling of local folding to site-specific binding of proteins to DNA,” Science, vol. 263, no. 5148, pp. 777–784, 1994. View at Google Scholar · View at Scopus
  36. B. A. Shoemaker, J. J. Portman, and P. G. Wolynes, “Speeding molecular recognition by using the folding funnel: the fly-casting mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 16, pp. 8868–8873, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Frieden, “Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept,” Journal of Biological Chemistry, vol. 245, no. 21, pp. 5788–5799, 1970. View at Google Scholar · View at Scopus
  38. C. M. Dobson, A. Sali, and M. Karplus, “Protein folding: a perspective from theory and experiment,” Angewandte Chemie International Edition, vol. 37, no. 7, pp. 868–893, 1998. View at Google Scholar
  39. C. J. Tsai, A. del Sol, and R. Nussinov, “Allostery: absence of a change in shape does not imply that allostery is not at play,” Journal of Molecular Biology, vol. 378, no. 1, pp. 1–11, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. V. N. Uversky and O. B. Ptitsyn, “‘Partly folded’ state, a new equilibrium state of protein molecules: four-state guanidinium chloride-induced unfolding of β-lactamase at low temperature,” Biochemistry, vol. 33, no. 10, pp. 2782–2791, 1994. View at Google Scholar · View at Scopus
  41. V. N. Uversky and O. B. Ptitsyn, “Further evidence on the equilibrium “pre-molten globule state”: four-state guanidinium chloride-induced unfolding of carbonic anhydrase B at low temperature,” Journal of Molecular Biology, vol. 255, no. 1, pp. 215–228, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. V. S. Pande and D. S. Rokhsar, “Is the molten globule a third phase of proteins?” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1490–1494, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. R. L. Baldwin and G. D. Rose, “Is protein folding hierarchic? II. Folding intermediates and transition states,” Trends in Biochemical Sciences, vol. 24, no. 2, pp. 77–83, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. V. N. Uversky, “Natively unfolded proteins: a point where biology waits for physics,” Protein Science, vol. 11, no. 4, pp. 739–756, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Freire, “The propagation of binding interactions to remote sites in proteins: analysis of the binding of the monoclonal antibody D1.3 to lysozyme,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 10118–10122, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Caflisch, “Folding for binding or binding for folding?” Trends in Biotechnology, vol. 21, no. 10, pp. 423–425, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. G. M. Verkhivker, D. Bouzida, D. K. Gehlhaar, P. A. Rejto, S. T. Freer, and P. W. Rose, “Simulating disorder-order transitions in molecular recognition of unstructured proteins: where folding meets binding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5148–5153, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Sugase, H. J. Dyson, and P. E. Wright, “Mechanism of coupled folding and binding of an intrinsically disordered protein,” Nature, vol. 447, no. 7147, pp. 1021–1025, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Levy, P. G. Wolynes, and J. N. Onuchic, “Protein topology determines binding mechanism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 2, pp. 511–516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. J. M. Scholtz, D. Barrick, E. J. York, J. M. Stewart, and R. L. Baldwin, “Urea unfolding of peptide helices as a model for interpreting protein unfolding,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 1, pp. 185–189, 1995. View at Publisher · View at Google Scholar · View at Scopus
  51. C. J. Tsai and R. Nussinov, “Hydrophobic folding units derived from dissimilar monomer structures and their interactions,” Protein Science, vol. 6, no. 1, pp. 24–42, 1997. View at Google Scholar · View at Scopus
  52. R. F. Greene and C. N. Pace, “Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, α chymotrypsin, and β lactoglobulin,” Journal of Biological Chemistry, vol. 249, no. 17, pp. 5388–5393, 1974. View at Google Scholar · View at Scopus
  53. C. N. Pace and K. E. Vanderburg, “Determining globular protein stability: guanidine hydrochloride denaturation of myoglobin,” Biochemistry, vol. 18, no. 2, pp. 288–292, 1979. View at Google Scholar · View at Scopus
  54. D. R. Robinson and W. P. Jencks, “The effect of compounds of the urea-guanidinium class on the activity coefficient of acetyltetraglycine ethyl ester and related compounds,” Journal of the American Chemical Society, vol. 87, pp. 2462–2470, 1965. View at Google Scholar · View at Scopus
  55. J. C. Lee and S. N. Timasheff, “Partial specific volumes and interactions with solvent components of proteins in guanidine hydrochloride,” Biochemistry, vol. 13, no. 2, pp. 257–265, 1974. View at Google Scholar · View at Scopus
  56. F. J. Castellino and R. Barker, “The effect of guanidinium, carbamoylguanidinium, and guanylguanidinium salts on the solubility of benzoyl-L-tyrosine ethyl ester and acetyltetraglycine ethyl ester in water,” Biochemistry, vol. 8, no. 8, pp. 3439–3442, 1969. View at Google Scholar · View at Scopus
  57. O. D. Monera, C. M. Kay, and R. S. Hodges, “Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions,” Protein Science, vol. 3, no. 11, pp. 1984–1991, 1994. View at Google Scholar · View at Scopus
  58. J. A. Schellman, “A simple model for solvation in mixed solvents. Applications to the stabilization and destabilization of macromolecular structures,” Biophysical Chemistry, vol. 37, no. 1–3, pp. 121–140, 1990. View at Publisher · View at Google Scholar · View at Scopus
  59. P. Tompa, C. Szász, and L. Buday, “Structural disorder throws new light on moonlighting,” Trends in Biochemical Sciences, vol. 30, no. 9, pp. 484–489, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. M. N. Fukuda, M. Fukuda, and S. Hakomori, “Cell surface modification by endo-β-galactosidase. Change of blood group activities and release of oligosaccharides from glycoproteins and glycosphingolipids of human erythrocytes,” Journal of Biological Chemistry, vol. 254, no. 12, pp. 5458–5465, 1979. View at Google Scholar · View at Scopus
  61. T. K. Biswas, “Characterization of β-galactosidases from the germinating seeds of Vigna sinensis,” Phytochemistry, vol. 26, no. 2, pp. 359–364, 1987. View at Google Scholar · View at Scopus
  62. Z. M. Ali, S. Armugam, and H. Lazan, “Beta-Galactosidase and its significance in ripening mango fruit,” Phytochemistry, vol. 38, no. 5, pp. 1109–1114, 1995. View at Publisher · View at Google Scholar · View at Scopus
  63. F. C. Chilaka, C. O. Nwamba, and A. A. Moosavi-Movahedi, “Cation modulation of hemoglobin interaction with sodium n-dodecyl sulfate (SDS). I: Calcium modulation at pH 7.20,” Cell Biochemistry and Biophysics, vol. 60, no. 3, pp. 187–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. C. O. Nwamba, F. C. Chilaka, and A. A. Moosavi-Movahedi, “Cation modulation of hemoglobin interaction with sodium n-dodecyl sulfate (SDS). II: Calcium modulation at pH 5.0,” Cell Biochemistry and Biophysics, vol. 61, pp. 573–584, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. S. H. Lawrence, T. Selwood, and E. K. Jaffe, “Diverse clinical compounds alter the quaternary structure and inhibit the activity of an essential enzyme,” ChemMedChem, vol. 6, no. 6, pp. 1067–1073, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. S. H. Lawrence and E. K. Jaffe, “Expanding the concepts in protein structure-function relationships and enzyme kinetics: teaching using morpheeins,” Biochemistry and Molecular Biology Education, vol. 36, no. 4, pp. 274–283, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. C. J. Jeffery, “Molecular mechanisms for multitasking: recent crystal structures of moonlighting proteins,” Current Opinion in Structural Biology, vol. 14, no. 6, pp. 663–668, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. G. P. Moore, “The C-value paradox,” BioScience, vol. 34, pp. 425–429, 1984. View at Publisher · View at Google Scholar
  69. E. K. Jaffe and S. H. Lawrence, “Allostery and the dynamic oligomerization of porphobilinogen synthase,” Archives in Biochemistry and Biophysics, vol. 519, pp. 144–153, 2012. View at Publisher · View at Google Scholar