Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2012, Article ID 905804, 13 pages
http://dx.doi.org/10.1155/2012/905804
Research Article

Statistical Approach for Optimization of Physiochemical Requirements on Alkaline Protease Production from Bacillus licheniformis NCIM 2042

Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, India

Received 26 April 2011; Revised 6 September 2011; Accepted 21 September 2011

Academic Editor: Alane Beatriz Vermelho

Copyright © 2012 Biswanath Bhunia and Apurba Dey. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Shah, K. Mody, J. Keshri, and B. Jha, “Purification and characterization of a solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus isolated from the Gulf of Khambhat,” Journal of Molecular Catalysis B, vol. 67, no. 1-2, pp. 85–91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Anwar and M. Saleemuddin, “Alkaline protease from Spilosoma obliqua: potential applications in bio-formulations,” Biotechnology and Applied Biochemistry, vol. 31, no. 2, pp. 85–89, 2000. View at Google Scholar · View at Scopus
  3. G. D. Haki and S. K. Rakshit, “Developments in industrially important thermostable enzymes: a review,” Bioresource Technology, vol. 89, no. 1, pp. 17–34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Johnvesly and G. R. Naik, “Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium,” Process Biochemistry, vol. 37, no. 2, pp. 139–144, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Fu, S. B. A. Hamid, C. N. A. Razak, M. Basri, A. Bakar Salleh, and R. N. Z. A. Rahman, “Secretory expression in Escherichia coli and single-step purification of a heat-stable alkaline protease,” Protein Expression and Purification, vol. 28, no. 1, pp. 63–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. R. N. Z. A. Rahman, L. P. Geok, M. Basri, and A. B. Salleh, “An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: enzyme purification and characterization,” Enzyme and Microbial Technology, vol. 39, no. 7, pp. 1484–1491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Bhunia, D. Dutta, and S. Chaudhuri, “Extracellular alkaline protease from Bacillus licheniformis NCIM-2042: improving enzyme activity assay and characterization,” Engineering in Life Sciences, vol. 11, no. 2, pp. 207–215, 2011. View at Publisher · View at Google Scholar
  8. Q. K. Beg, R. K. Saxena, and R. Gupta, “De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations,” Process Biochemistry, vol. 37, no. 10, pp. 1103–1109, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Gupta, Q. K. Beg, S. Khan, and B. Chauhan, “An overview on fermentation, downstream processing and properties of microbial alkaline proteases,” Applied Microbiology and Biotechnology, vol. 60, no. 4, pp. 381–395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. W. A. Lotfy, K. M. Ghanem, and E. R. El-Helow, “Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs,” Bioresource Technology, vol. 98, no. 18, pp. 3470–3477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  12. B. Chauhan and R. Gupta, “Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14,” Process Biochemistry, vol. 39, no. 12, pp. 2115–2122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Patel, M. Dodia, and S. P. Singh, “Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: production and optimization,” Process Biochemistry, vol. 40, no. 11, pp. 3569–3575, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Oberoi, Q. K. Beg, S. Puri, R. K. Saxena, and R. Gupta, “Characterization and wash performance analysis of an SDS-stable alkaline protease from a Bacillus sp,” World Journal of Microbiology and Biotechnology, vol. 17, no. 5, pp. 493–497, 2001. View at Google Scholar
  15. R. L. Plackett and J. P. Burman, “The design of optimum multifactorial experiments,” Biometrika, vol. 33, pp. 305–325, 1946. View at Google Scholar
  16. M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry,” Talanta, vol. 76, no. 5, pp. 965–977, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. S. L. C. Ferreira, R. E. Bruns, E. G. P. da Silva et al., “Statistical designs and response surface techniques for the optimization of chromatographic systems,” Journal of Chromatography A, vol. 1158, no. 1-2, pp. 2–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Levin, F. Forchiassin, and A. Viale, “Ligninolytic enzyme production and dye decolorization by Trametes trogii: application of the Plackett-Burman experimental design to evaluate nutritional requirements,” Process Biochemistry, vol. 40, no. 3-4, pp. 1381–1387, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Potumarthi, C. Subhakar, and A. Jetty, “Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: effect of aeration and agitation regimes,” Biochemical Engineering Journal, vol. 34, no. 2, pp. 185–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Potumarthi, C. Subhakar, A. Pavani, and A. Jetty, “Evaluation of various parameters of calcium-alginate immobilization method for enhanced alkaline protease production by Bacillus licheniformis NCIM-2042 using statistical methods,” Bioresource Technology, vol. 99, no. 6, pp. 1776–1786, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. P. Geok, C. Nyonya, C. N. Abdul Razak, R. N. Z. Abd Rahman, M. Basri, and A. B. Salleh, “Isolation and screening of an extracellular organic solvent-tolerant protease producer,” Biochemical Engineering Journal, vol. 13, no. 1, pp. 73–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Y. Tang, Y. Pan, S. Li, and B. F. He, “Screening and isolation of an organic solvent-tolerant bacterium for high-yield production of organic solvent-stable protease,” Bioresource Technology, vol. 99, no. 15, pp. 7388–7392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Li, B. He, Z. Bai, and P. Ouyang, “A novel organic solvent-stable alkaline protease from organic solvent-tolerant Bacillus licheniformis YP1A,” Journal of Molecular Catalysis B, vol. 56, no. 2-3, pp. 85–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. L. M. Simon, K. László, A. Vértesi, K. Bagi, and B. Szajáni, “Stability of hydrolytic enzymes in water-organic solvent systems,” Journal of Molecular Catalysis B, vol. 4, no. 1-2, pp. 41–45, 1998. View at Publisher · View at Google Scholar
  25. B. Jaouadi, S. E. Chaabouni, M. Rhimi, and S. Bejar, “Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency,” Biochimie, vol. 90, no. 9, pp. 1291–1305, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Gupta, I. Roy, S. K. Khare, and M. N. Gupta, “Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA,” Journal of Chromatography A, vol. 1069, no. 2, pp. 155–161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Sareen and P. Mishra, “Purification and characterization of organic solvent stable protease from Bacillus licheniformis RSP-09-37,” Applied Microbiology and Biotechnology, vol. 79, no. 3, pp. 399–405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. K. Rai and A. K. Mukherjee, “Ecological significance and some biotechnological application of an organic solvent stable alkaline serine protease from Bacillus subtilis strain DM-04,” Bioresource Technology, vol. 100, no. 9, pp. 2642–2645, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Ghorbel, A. Sellami-Kamoun, and M. Nasri, “Stability studies of protease from Bacillus cereus BG1,” Enzyme and Microbial Technology, vol. 32, no. 5, pp. 513–518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. Q. K. Beg and R. Gupta, “Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis,” Enzyme and Microbial Technology, vol. 32, no. 2, pp. 294–304, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Ghafoor and S. Hasnain, “Characteristics of an extracellular protease isolated from Bacillus subtilis AG-1 and its performance in relation to detergent components,” Annals of Microbiology, vol. 59, no. 3, pp. 559–563, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. S. Joo, Y. M. Koo, J. W. Choi, and C. S. Chang, “Stabilization method of an alkaline protease from inactivation by heat, SDS and hydrogen peroxide,” Enzyme and Microbial Technology, vol. 36, no. 5-6, pp. 766–772, 2005. View at Publisher · View at Google Scholar · View at Scopus