Table of Contents Author Guidelines
Enzyme Research
Volume 2012, Article ID 921362, 14 pages
http://dx.doi.org/10.1155/2012/921362
Review Article

Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications

1Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia
2Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
3Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
4Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Received 26 March 2012; Revised 12 June 2012; Accepted 12 June 2012

Academic Editor: Joaquim Cabral

Copyright © 2012 Siew Ling Hii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. F. Zobel, “Starch: sources, production, and properties,” in Starch Hydrolysis Products, F. W. Schenck and R. E. Hebeda, Eds., pp. 23–44, VCH, New York, NY, USA, 1992. View at Google Scholar
  2. L. Marchal, “Towards a Rational Design of Commercial Maltodextrines: a Mechanistic Approach,” 1999http://www.bpe.wur.nl/UK/Research2/Dissertations/Enzymatic+starch+hydrolysis/Enzymatic+starch+hydrolysis+background/.
  3. C. F. V. Hobel, Access to biodiversity and new genes from thermophiles by special enrichment methods [Ph.D. thesis], University of Iceland, Iceland, 2004.
  4. J. J. M. Swinkels, “Sources of starch, its chemistry and physics,” in Starch Conversion Technology, G. M. A. Vaan Beynum and J. A. Roels, Eds., pp. 115–145, Marcell Deckker, New York, NY, USA, 1985. View at Google Scholar
  5. Y. Nakamura, “Some properties of starch debranching enzymes and their possible role in amylopectin biosynthesis,” Plant Science, vol. 121, no. 1, pp. 1–18, 1996. View at Google Scholar · View at Scopus
  6. C. Martin and A. M. Smith, “Starch biosynthesis,” Plant Cell, vol. 7, no. 7, pp. 971–985, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. R. F. Tester, J. Karkalas, and X. Qi, “Starch- composition, fine structure and architecture,” Journal of Cereal Science, vol. 39, no. 2, pp. 151–165, 2004. View at Google Scholar
  8. M. S. Madihah, A. B. Ariff, K. M. Sahaid, A. A. Suraini, and M. I. A. Karim, “Direct fermentation of gelatinized sago starch to acetone-butanol-ethanol by Clostridium acetobutylicum,” World Journal of Microbiology and Biotechnology, vol. 17, no. 6, pp. 567–576, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Pérez and E. Bertoft, “The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review,” Starch-Stärke, vol. 62, no. 8, pp. 389–420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Reeve, “Starch hydrolysis: processes and equipment,” in Starch Hydrolysis Product: Worldwide Technology, Production, and Applications, F. W. Schenck and R. E. Hebeda, Eds., pp. 79–120, VCH, New York, NY, USA, 1992. View at Google Scholar
  11. B. D. Jensen and B. E. Norman, “Bacillus acidopullyticus pullulanase: applications and regulatory aspects for use in food industry,” Process Biochemistry, vol. 1, pp. 397–400, 1984. View at Google Scholar
  12. M. J. E. C. Van Der Maarel, B. Van Der Veen, J. C. M. Uitdehaag, H. Leemhuis, and L. Dijkhuizen, “Properties and applications of starch-converting enzymes of the α-amylase family,” Journal of Biotechnology, vol. 94, no. 2, pp. 137–155, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. G. D. Haki and S. K. Rakshit, “Developments in industrially important thermostable enzymes: a review,” Bioresource Technology, vol. 89, no. 1, pp. 17–34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. W. Gerhartz, Enzymes in Industry: Production and Applications, VCH, 1990.
  15. A. Pandey, P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan, “Advances in microbial amylases,” Biotechnology and Applied Biochemistry, vol. 31, no. 2, pp. 135–152, 2000. View at Google Scholar · View at Scopus
  16. R. N. Tharanathan and S. Mahadevamma, “Grain legumes—a boon to human nutrition,” Trends in Food Science and Technology, vol. 14, no. 12, pp. 507–518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Bertoldo and G. Antranikian, “Starch-hydrolyzing enzymes from thermophilic archaea and bacteria,” Current Opinion in Chemical Biology, vol. 6, no. 2, pp. 151–160, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. B. E. Norman, “New developments in starch syrup technology,” in Enzymes and Food Processing, pp. 15–51, 1981. View at Google Scholar
  19. W. M. Fogarty and C. T. Kelly, “Recent advances in microbial amylases,” in Microbial Enzymes and Biotechnology, pp. 71–132, Elsevier Applied Science Publishers, London, UK, 1990. View at Google Scholar
  20. M. Chaplin, “Production of syrups containing maltose,” 2002, http://www.lsbu.ac.uk/biology/enztech/maltose.html.
  21. W. M. Teague and P. J. Brumm, “Commercial enzymes for starch hydrolysis products,” in Starch Hydrolysis Products: Worldwide Technology, Production and Applications, F. W. Schenck and R. E. Hebeda, Eds., pp. 45–79, VCH, New York, NY, USA, 1992. View at Google Scholar
  22. H. Uhlig, Industrial Enzymes and Their Applications, Wiley-Interscience, New York, NY, USA, 1998.
  23. A. Kunamneni and S. Singh, “Improved high thermal stability of pullulanase from a newly isolated thermophilic Bacillus sp. AN-7,” Enzyme and Microbial Technology, vol. 39, no. 7, pp. 1399–1404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. U. Nair, R. S. Singhal, and M. Y. Kamat, “Induction of pullulanase production in Bacillus cereus FDTA-13,” Bioresource Technology, vol. 98, no. 4, pp. 856–859, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Zareian, K. Khajeh, B. Ranjbar, B. Dabirmanesh, M. Ghollasi, and N. Mollania, “Purification and characterization of a novel amylopullulanase that converts pullulan to glucose, maltose, and maltotriose and starch to glucose and maltose,” Enzyme and Microbial Technology, vol. 46, no. 2, pp. 57–63, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Rudiger, P. L. Jorgensen, and G. Antranikian, “Isolation and characterization of a heat-stable pullulanase from the hyperthermophilic archaeon Pyrococcus woesei after cloning and expression of its gene in Escherichia coli,” Applied and Environmental Microbiology, vol. 61, no. 2, pp. 567–575, 1995. View at Google Scholar · View at Scopus
  27. C. H. Kim, O. Nashiru, and J. H. Ko, “Purification and biochemical characterization of pullulanase type I from Thermus caldophilus GK-24,” FEMS Microbiology Letters, vol. 138, no. 2-3, pp. 147–152, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Koch, F. Canganella, H. Hippe, K. D. Jahnke, and G. Antranikian, “Purification and properties of a thermostable pullulanase from a newly isolated thermophilic anaerobic bacterium, Fervidobacterium pennavorans Ven5,” Applied and Environmental Microbiology, vol. 63, no. 3, pp. 1088–1094, 1997. View at Google Scholar · View at Scopus
  29. C. Bertoldo, F. Duffner, P. L. Jorgensen, and G. Antranikian, “Pullulanase type I from Fervidobacterium pennavorans Ven5: cloning, sequencing, and expression of the gene and biochemical characterization of the recombinant enzyme,” Applied and Environmental Microbiology, vol. 65, no. 5, pp. 2084–2091, 1999. View at Google Scholar · View at Scopus
  30. E. Ben Messaoud, Y. Ben Ammar, L. Mellouli, and S. Bejar, “Thermostable pullulanase type I from new isolated Bacillus thermoleovorans US105: cloning, sequencing and expression of the gene in E. coli,” Enzyme and Microbial Technology, vol. 31, no. 6, pp. 827–832, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Roy, E. B. Messaoud, and S. Bejar, “Isolation and purification of an acidic pullulanase type II from newly isolated Bacillus sp. US149,” Enzyme and Microbial Technology, vol. 33, no. 5, pp. 720–724, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. F. Duffner, C. Bertoldo, J. T. Andersen, K. Wagner, and G. Antranikian, “A new thermoactive pullulanase from Desulfurococcus mucosus: cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillus subtilis,” Journal of Bacteriology, vol. 182, no. 22, pp. 6331–6338, 2000. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Niehaus, C. Bertoldo, M. Kähler, and G. Antranikian, “Extremophiles as a source of novel enzymes for industrial application,” Applied Microbiology and Biotechnology, vol. 51, no. 6, pp. 711–729, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Matzke, A. Herrmann, E. Schneider, and E. P. Bakker, “Gene cloning, nucleotide sequence and biochemical properties of a cytoplasmic cyclomaltodextrinase (neopullulanase) from Alicyclobacillus acidocaldarius, reclassification of a group of enzymes,” FEMS Microbiology Letters, vol. 183, no. 1, pp. 55–61, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Leemhuis, What makes cyclodextrin glycosyltransferase a transglycosylase [Ph.D. thesis], University of Groningen, Groningen, The Netherlands, 2003.
  36. H. Aoki and Y. Sakano, “A classification of dextran-hydrolysing enzymes based on amino-acid-sequence similarities,” Biochemical Journal, vol. 323, no. 3, pp. 859–861, 1997. View at Google Scholar · View at Scopus
  37. F. Niehaus, A. Peters, T. Groudieva, and G. Antranikian, “Cloning, expression and biochemical characterisation of a unique thermostable pullulan-hydrolysing enzyme from the hyperthermophilic archaeon Thermococcus aggregans,” FEMS Microbiology Letters, vol. 190, no. 2, pp. 223–229, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. B. E. Norman, “A novel debranching enzyme for application in the glucose syrup industry,” Starch-Stärke, vol. 34, no. 10, pp. 340–346, 1982. View at Google Scholar
  39. A. Kubo, N. Fujita, K. Harada, T. Matsuda, H. Satoh, and Y. Nakamura, “The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm,” Plant Physiology, vol. 121, no. 2, pp. 399–410, 1999. View at Google Scholar · View at Scopus
  40. E. Lévêque, Š. Janeček, B. Haye, and A. Belarbi, “Thermophilic archaeal amylolytic enzymes,” Enzyme and Microbial Technology, vol. 26, no. 1, pp. 3–14, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Ara, K. Saeki, K. Igarashi et al., “Purification and characterization of an alkaline amylopullulanase with both α-1,4 and α-1,6 hydrolytic activity from alkalophilic Bacillus sp. KSM-1378,” Biochimica et Biophysica Acta, vol. 1243, no. 3, pp. 315–324, 1995. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Kuriki, S. Okada, and T. Imanaka, “New type of pullulanase from Bacillus stearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis,” Journal of Bacteriology, vol. 170, no. 4, pp. 1554–1559, 1988. View at Google Scholar · View at Scopus
  43. A. Sunna, M. Moracci, M. Rossi, and G. Antranikian, “Glycosyl hydrolases from hyperthermophiles,” Extremophiles, vol. 1, no. 1, pp. 2–13, 1997. View at Google Scholar · View at Scopus
  44. H. Guzman-Maldonado and O. Paredes-Lopez, “Amylolytic enzymes and products derived from starch: a review,” Critical Reviews in Food Science and Nutrition, vol. 35, no. 5, pp. 373–403, 1995. View at Google Scholar · View at Scopus
  45. R. E. Hebeda, T. Nagodawithana, and G. Reed, “Starches, sugars, and syrups,” in Enzymes in Food Processing, pp. 321–343, 3rd edition, 1993. View at Google Scholar
  46. M. Chaplin, “Production of glucose syrup,” 2004, http://www.lsbu.ac.uk/biology/enztech/glucose.html.
  47. F. Shiraishi, K. Kawakami, and K. Kusunoki, “Kinetics of condensation of glucose into maltose and isomaltose in hydrolysis of starch by glucoamylase,” Biotechnology and Bioengineering, vol. 27, no. 4, pp. 498–502, 1985. View at Google Scholar · View at Scopus
  48. M. A. Hassan, Y. Shirai, A. Kubota, M. I. A. Karim, K. Nakanishi, and K. Hashimoto, “Effect of oligosaccharides on glucose consumption by Rhodobacter sphaeroides in polyhydroxyalkanoate production from enzymatically treated crude sago starch,” Journal of Fermentation and Bioengineering, vol. 86, no. 1, pp. 57–61, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. W. D. Crabb and J. K. Shetty, “Commodity scale production of sugars from starches,” Current Opinion in Microbiology, vol. 2, no. 3, pp. 252–256, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Poliakoff and P. Licence, “Sustainable technology: green chemistry,” Nature, vol. 450, no. 7171, pp. 810–812, 2007. View at Publisher · View at Google Scholar
  51. Y. Suzuki, K. Hatagaki, and H. Oda, “A hyperthermostable pullulanase produced by an extreme thermophile, Bacillus flavocaldarius KP 1228, and evidence for the proline theory of increasing protein thermostability,” Applied Microbiology and Biotechnology, vol. 34, no. 6, pp. 707–714, 1991. View at Google Scholar · View at Scopus
  52. Y. Takasaki, A. Hayashida, Y. Ino, T. Ogawa, S. Hayashi, and K. Imada, “Cell-bound pullulanase from Streptomyces sp. No. 27,” Bioscience, Biotechnology, and Biochemistry, vol. 57, no. 3, pp. 477–478, 1993. View at Publisher · View at Google Scholar
  53. B. C. Saha, R. Lamed, C. Y. Lee, S. P. Mathupala, and J. G. Zeikus, “Characterization of an endo-acting amylopullulanase from Thermoanaerobacter strain B6A,” Applied and Environmental Microbiology, vol. 56, no. 4, pp. 881–886, 1990. View at Google Scholar · View at Scopus
  54. A. Spreinat and G. Antranikian, “Purification and properties of a thermostable pullulanase from Clostridium thermosulfurogens EM1 which hydrolyses both α-1,6 and α-1,4-glycosidic linkages,” Applied Microbiology and Biotechnology, vol. 33, no. 5, pp. 511–518, 1990. View at Google Scholar · View at Scopus
  55. S. H. Brown and R. M. Kelly, “Characterization of amylolytic enzymes, having both α-1,4 and α-1,6 hydrolytic activity, from the thermophilic archaea Pyrococcus furiosus and Thermococcus litoralis,” Applied and Environmental Microbiology, vol. 59, no. 8, pp. 2614–2621, 1993. View at Google Scholar · View at Scopus
  56. F. Canganella, C. M. Andrade, and G. Antranikian, “Charactevization of amylolytic and pullulytic enzymes from thermophilic archaea and from a new Fervidobacterium species,” Applied Microbiology and Biotechnology, vol. 42, no. 2-3, pp. 239–245, 1994. View at Publisher · View at Google Scholar · View at Scopus
  57. K. A. Smith and A. A. Salyers, “Characterization of a neopullulanase and an α-glucosidase from Bacteroides thetaiotaomicron 95-1,” Journal of Bacteriology, vol. 173, no. 9, pp. 2962–2968, 1991. View at Google Scholar · View at Scopus
  58. M. J. Yebra, J. Arroyo, P. Sanz, and J. A. Prieto, “Characterization of novel neopullulanase from Bacillus polymyxa,” Applied Biochemistry and Biotechnology, vol. 68, no. 1-2, pp. 113–120, 1997. View at Google Scholar · View at Scopus
  59. K. Ara, K. Igarashi, K. Saeki, S. Kawai, and S. Ito, “Purification and some properties of an alkaline pullulanase from alkalophilic Bacillus sp. KSM-1876,” Bioscience, Biotechnology, and Biochemistry, vol. 56, no. 1, pp. 62–65, 1992. View at Publisher · View at Google Scholar
  60. C. Bertoldo, M. Armbrecht, F. Becker, T. Schäfer, G. Antranikian, and W. Liebl, “Cloning, sequencing, and characterization of a heat- and alkali-stable type I pullulanase from Anaerobranca gottschalkii,” Applied and Environmental Microbiology, vol. 70, no. 6, pp. 3407–3416, 2004. View at Google Scholar
  61. J. T. Chen, M. C. Chen, L. L. Chen, and W. S. Chu, “Structure and expression of an amylopullulanase gene from Bacillus stearothermophilus TS-23,” Biotechnology and Applied Biochemistry, vol. 33, no. 3, pp. 189–199, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Kuriki, J. H. Park, S. Okada, and T. Imanaka, “Purification and characterization of thermostable pullulanase from Bacillus stearothermophilus and molecular cloning and expression of the gene in Bacillus subtilis,” Applied and Environmental Microbiology, vol. 54, no. 11, pp. 2881–2883, 1988. View at Google Scholar
  63. S. Michaelis, C. Chapon, and C. D'Enfert, “Characterization and expression of the structural gene for pullulanase, a maltose-inducible secreted protein of Klebsiella pneumoniae,” Journal of Bacteriology, vol. 164, no. 2, pp. 633–638, 1985. View at Google Scholar · View at Scopus
  64. J. W. Kim, “Molecular cloning and characterization of a thennostable pullulanase from a Thermus Strain IM6501,” Food Science and Biotechnology, vol. 9, no. 3, pp. 188–194, 2000. View at Google Scholar
  65. M. Erra-Pujada, F. Chang-Pi-Hin, P. Debeire, F. Duchiron, and M. J. O'donohue, “Purification and properties of the catalytic domain of the thermostable pullulanase type II from Thermococcus hydrothermalis,” Biotechnology Letters, vol. 23, no. 16, pp. 1273–1277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Bibel, C. Brettl, U. Gosslar, G. Kriegshäuser, and W. Liebl, “Isolation and analysis of genes for amylolytic enzymes of the hyperthermophilic bacterium Thermotoga maritima,” FEMS Microbiology Letters, vol. 158, no. 1, pp. 9–15, 1998. View at Publisher · View at Google Scholar · View at Scopus
  67. G. D. Albertson, R. H. McHale, M. D. Gibbs, and P. L. Bergquist, “Cloning and sequence of a type I pullulanase from an extremely thermophilic anaerobic bacterium, Caldicellulosiruptor saccharolyticus,” Biochimica et Biophysica Acta, vol. 1354, no. 1, pp. 35–39, 1997. View at Publisher · View at Google Scholar · View at Scopus
  68. S. P. Lee, M. Morikawa, M. Takagi, and T. Imanaka, “Cloning of the aapT gene and characterization of its product, α-amylase- pullulanase (AapT), from thermophilic and alkaliphilic Bacillus sp. strain XAL601,” Applied and Environmental Microbiology, vol. 60, no. 10, pp. 3764–3773, 1994. View at Google Scholar · View at Scopus
  69. R. Ohba and S. Ueda, “Purification, crystallization and some properties of intracellular pullulanase from Aerobacter aerogenes,” Agricultural and Biological Chemistry, vol. 37, no. 12, pp. 2821–2826, 1973. View at Google Scholar · View at Scopus
  70. H. Bender and K. Wallenfels, “Untersuchungen an Pullulan. II. Spezifischer Abbau durch ein bakterielles Enzym,” Biochemische Zeitschrift, vol. 334, pp. 79–95, 1961. View at Google Scholar
  71. M. G. Kornacker and A. P. Pugsley, “Molecular characterization of pulA and its product, pullulanase, a secreted enzyme of Klebsiella pneumoniae UNF5023,” Molecular Microbiology, vol. 4, no. 1, pp. 73–85, 1990. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Klingeberg, H. Hippe, and G. Antranikian, “Production of the novel pullulanases at high concentrations by two newly isolated thermophilic clostridia,” FEMS Microbiology Letters, vol. 69, no. 1-2, pp. 145–152, 1990. View at Google Scholar · View at Scopus
  73. S. H. Brown, H. R. Costantino, and R. M. Kelly, “Characterization of amylolytic enzyme activities associated with the hyperthermophilic archaebacterium Pyrococcus furiosus,” Applied and Environmental Microbiology, vol. 56, no. 7, pp. 1985–1991, 1990. View at Google Scholar · View at Scopus
  74. W. D. Crabb and C. Mitchinson, “Enzymes involved in the processing of starch to sugars,” Trends in Biotechnology, vol. 15, no. 9, pp. 349–352, 1997. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Horikoshi, “Alkaliphiles: some applications of their products for biotechnology,” Microbiology and Molecular Biology Reviews, vol. 63, no. 4, pp. 735–750, 1999. View at Google Scholar · View at Scopus
  76. Y. Hatada, K. Saito, H. Hagihara, K. Ozaki, and S. Ito, “Nucleotide and deduced amino acid sequences of an alkaline pullulanase from the alkaliphilic bacterium Bacillus sp. KSM-1876,” Biochimica et Biophysica Acta, vol. 1545, no. 1-2, pp. 367–371, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. T. Imanaka and T. Kuriki, “Pattern of action of Bacillus stearothermophilus neopullulanase on pullulan,” Journal of Bacteriology, vol. 171, no. 1, pp. 369–374, 1989. View at Google Scholar · View at Scopus
  78. F. J. M. Mergulhão, D. K. Summers, and G. A. Monteiro, “Recombinant protein secretion in Escherichia coli,” Biotechnology Advances, vol. 23, no. 3, pp. 177–202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. H. S. Olsen, P. Goddard, and A. S. Novo Nordisk, Enzymes at Work: A Concise Guide to Industrial Enzymes and their Uses, Novo Nordisk A/S, 2000.
  80. I. Gomes, J. Gomes, and W. Steiner, “Highly thermostable amylase and pullulanase of the extreme thermophilic eubacterium Rhodothermus marinus: production and partial characterization,” Bioresource Technology, vol. 90, no. 2, pp. 207–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. J. F. Shaw and J. R. Sheu, “Production of high-maltose syrup and high-protein flour from rice by an enzymatic method,” Bioscience, Biotechnology, and Biochemistry, vol. 56, no. 7, pp. 1071–1073, 1992. View at Publisher · View at Google Scholar
  82. P. Nigam and D. Singh, “Enzyme and microbial systems involved in starch processing,” Enzyme and Microbial Technology, vol. 17, no. 9, pp. 770–778, 1995. View at Publisher · View at Google Scholar · View at Scopus
  83. J. D. Dziezak, “Ingredients for sweet success,” Food Technology, vol. 43, no. 10, pp. 94–116, 1989. View at Google Scholar
  84. W. Vorwerg, S. Radosta, and E. Leibnitz, “Study of a preparative-scale process for the production of amylose,” Carbohydrate Polymers, vol. 47, no. 2, pp. 181–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. A. R. Bird, I. L. Brown, and D. L. Topping, “Starches, resistant starches, the gut microflora and human health,” Current issues in Intestinal Microbiology, vol. 1, no. 1, pp. 25–37, 2000. View at Google Scholar · View at Scopus
  86. S. Jobling, “Improving starch for food and industrial applications,” Current Opinion in Plant Biology, vol. 7, no. 2, pp. 210–218, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Schallmey, A. Singh, and O. P. Ward, “Developments in the use of Bacillus species for industrial production,” Canadian Journal of Microbiology, vol. 50, no. 1, pp. 1–17, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. J. A. Rendleman Jr., “Enhancement of cyclodextrin production through use of debranching enzymes,” Biotechnology and Applied Biochemistry, vol. 26, no. 1, pp. 51–61, 1997. View at Google Scholar · View at Scopus
  89. Y. K. Kim and J. F. Robyt, “Enzyme modification of starch granules: formation and retention of cyclomaltodextrins inside starch granules by reaction of cyclomaltodextrin glucanosyltransferase with solid granules,” Carbohydrate Research, vol. 328, no. 4, pp. 509–515, 2000. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Marotta, A. Martino, A. De Rosa, E. Farina, M. Cartenì, and M. De Rosa, “Degradation of dental plaque glucans and prevention of glucan formation using commercial enzymes,” Process Biochemistry, vol. 38, no. 1, pp. 101–108, 2002. View at Publisher · View at Google Scholar · View at Scopus