Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2013, Article ID 897420, 9 pages
http://dx.doi.org/10.1155/2013/897420
Research Article

Recovery of Extracellular Lipolytic Enzymes from Macrophomina phaseolina by Foam Fractionation with Air

Laboratório de Tecnologia Bioquímica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenidal Ipiranga 2752, Sala 709, 90610-000 Porto Alegre, RS, Brazil

Received 26 February 2013; Revised 7 April 2013; Accepted 8 April 2013

Academic Editor: Denise M. Guimarães Freire

Copyright © 2013 Claudia Schinke and José Carlos Germani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. 2013, http://www.jutegenome.org/mpbrowse/.
  2. P. W. Crous, B. Slippers, and M.J. Wnigfield, “Phylogenetic lineages in the Botryosphaeriaceae,” Studies in Micology, vol. 55, pp. 235–253, 2006. View at Publisher · View at Google Scholar
  3. S. Islam, M.S. Haque, M. M. Islam et al., “Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina,” BMC Genomics, vol. 13, article 493, 2012. View at Google Scholar
  4. http://nt.ars-grin.gov/fungaldatabases/new_allViewGenBank.cfm?thisName=Macrophomina%20phaseolina&organismtype=Fungus&CFID=83452&CFTOKEN=983d62a385776558-E3B89C2C-90CE-F9F3-F90326F1E089AB43.
  5. A. Sanyal, S. C. Saha, and R. K. Kundu, “Induction of carboxymethylcellulase in Macrophomina phaseolina,” Folia Microbiologica, vol. 26, no. 2, pp. 83–88, 1981. View at Google Scholar · View at Scopus
  6. U. Roy and V. C. Vora, “Purification and properties of a carboxymethylcellulase from phytopathogenic fungus Macrophomina phaseolina,” Indian Journal of Biochemistry and Biophysics, vol. 26, no. 4, pp. 243–248, 1989. View at Google Scholar · View at Scopus
  7. P. K. Roy, U. Roy, and V. C. Vora, “Hydrolysis of wheat bran, rice bran and jute powder by immobilized enzymes from Macrophomina phaseolina,” World Journal of Microbiology and Biotechnology, vol. 9, no. 2, pp. 164–167, 1993. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Wang and R. W. Jones, “A unique endoglucanase-encoding gene cloned from the phytopathogenic fungus Macrophomina phaseolina,” Applied and Environmental Microbiology, vol. 61, no. 5, pp. 2004–2006, 1995. View at Google Scholar · View at Scopus
  9. H. Wang and R. W. Jones, “Properties of the Macrophomina phaseolina endoglucanase (EGL 1) gene product in bacterial and yeast expression systems,” Applied Biochemistry and Biotechnology Part A, vol. 81, no. 3, pp. 153–160, 1999. View at Google Scholar · View at Scopus
  10. A. Miettinen-Oinonen, “Cellulases in the textile industry,” in Industrial Enzymes: Structure, Function and Applications, J. Polaina and A. P. MacCabe, Eds., pp. 51–64, Springer, Dordrecht, The Netherlands, 2007. View at Google Scholar
  11. L. Afouda, G. Wolf, and K. Wydra, “Development of a sensitive serological method for specific detection of latent infection of Macrophomina phaseolina in cowpea,” Journal of Phytopathology, vol. 157, no. 1, pp. 15–23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Kaur, “Carbohydrate degrading enzyme production by plant pathogenic mycelia and microsclerotia isolates of Macrophomina phaseolina through koji fermentation,” Industrial Crops and Products, vol. 36, no. 1, pp. 140–148, 2012. View at Publisher · View at Google Scholar
  13. C. Schinke and J. C. Germani, “Screening Macrophomina phaseolina isolates for alkaline lipases and other extracellular hydrolases,” International Microbiology, vol. 15, pp. 1–7, 2012. View at Google Scholar
  14. O. Kirk, T. V. Borchert, and C. C. Fuglsang, “Industrial enzyme applications,” Current Opinion in Biotechnology, vol. 13, no. 4, pp. 345–351, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. M. J. Waites, N. L. Morgan, J. S. Rockey, and G. Higton, Industrial Microbiology: An Introduction, Blackwell, Oxford, UK, 2001.
  16. R. K. Saxena, A. Sheoran, B. Giri, and W. S. Davidson, “Purification strategies for microbial lipases,” Journal of Microbiological Methods, vol. 52, no. 1, pp. 1–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. A. K. Singh and M. Mukhopadhyay, “Overview of fungal lipase: a review,” Applied Biochemistry and Biotechnology, vol. 166, pp. 486–520, 2012. View at Google Scholar
  18. 2013, http://ec.europa.eu/environment/archives/wssd/pdf/fs_industrial_development.pdf.
  19. S. E. Charm, J. Morningstar, C. C. Matteo, and B. Paltiel, “The separation and purification of enzymes through foaming,” Analytical Biochemistry, vol. 15, no. 3, pp. 498–508, 1966. View at Google Scholar · View at Scopus
  20. C. E. Lockwood, P. M. Bummer, and M. Jay, “Purification of proteins using foam fractionation,” Pharmaceutical Research, vol. 14, no. 11, pp. 1511–1515, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. B. M. Gerken, A. Nicolai, D. Linke, H. Zorn, R. G. Berger, and H. Parlar, “Effective enrichment and recovery of laccase C using continuous foam fractionation,” Separation and Purification Technology, vol. 49, no. 3, pp. 291–294, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Linke and R. G. Berger, “Foaming of proteins: new prospects for enzyme purification processes,” Journal of Biotechnology, vol. 152, no. 4, pp. 125–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Burapatana, E. A. Booth, I. M. Snyder, A. Prokop, and R. D. Tanner, “A proposed mechanism for detergent-assisted foam fractionation of lysozyme and cellulase restored with β-cyclodextrin,” Applied Biochemistry and Biotechnology, vol. 137-140, no. 1-12, pp. 777–791, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. N. Dos Prazeres, A. P. Simiqueli, G. M. Pastore et al., “Recovery of extracellular alkaline lipases of Fusarium spec. by foam fractionation,” Fresenius Environmental Bulletin, vol. 16, no. 11 B, pp. 1503–1508, 2007. View at Google Scholar · View at Scopus
  25. B. Burghoff, “Foam fractionation applications,” Journal of Biotechnology, vol. 161, pp. 126–137, 2012. View at Google Scholar
  26. J. R. Clarkson, Z. F. Cui, and R. C. Darton, “Protein denaturation in foam—I. Mechanism study,” Journal of Colloid and Interface Science, vol. 215, pp. 323–332, 1999. View at Publisher · View at Google Scholar
  27. V. Burapatana, E. A. Booth, A. Prokop, and R. D. Tanner, “Effect of buffer and pH on detergent-assisted foam fractionation of cellulase,” Industrial and Engineering Chemistry Research, vol. 44, no. 14, pp. 4968–4972, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Burapatana, A. Prokop, and R. D. Tanner, “Enhancing cellulase foam fractionation with addition of surfactant,” Applied Biochemistry and Biotechnology Part A, vol. 122, no. 1–3, pp. 541–552, 2005. View at Google Scholar · View at Scopus
  29. Z. Liu, Z. Liu, D. Wang, F. Ding, and N. Yuan, “On the denaturation of enzymes in the process of foam fractionation,” Bioseparation, vol. 7, no. 3, pp. 167–174, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Uraizee and G. Narsimhan, “Foam fractionation of proteins and enzymes—II. Performance and modelling,” Enzyme and Microbial Technology, vol. 12, no. 4, pp. 315–316, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Uraizee and G. Narsimhan, “Effects of kinetics of adsorption and coalescence on continuous foam concentration of proteins: comparison of experimental results with model predictions,” Biotechnology and Bioengineering, vol. 51, pp. 384–398, 1996. View at Google Scholar
  32. S. Ko, V. Loha, A. Prokop, and R. D. Tanner, “Batch foam recovery of sporamin from sweet potato,” Applied Biochemistry and Biotechnology Part A, vol. 70–72, pp. 547–558, 1998. View at Google Scholar · View at Scopus
  33. J. Merz, G. Schembecker, S. Riemer, M. Nimtz, and H. Zorn, “Purification and identification of a novel cutinase from Coprinopsis cinerea by adsorptive bubble separation,” Separation and Purification Technology, vol. 69, no. 1, pp. 57–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. D. Linke, H. Zorn, B. Gerken, H. Parlar, and R. G. Berger, “Laccase isolation by foam fractionation—new prospects of an old process,” Enzyme and Microbial Technology, vol. 40, no. 2, pp. 273–277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Linke, H. Zorn, B. Gerken, H. Parlar, and R. G. Berger, “Foam fractionation of exo-lipases from a growing fungus (Pleurotus sapidus),” Lipids, vol. 40, no. 3, pp. 323–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Schinke and J. C. Germani, “Lipolytic activity of the cultivation broths of four Macrophomina phaseolina isolates,” European Journal of Lipid Science and Technology, vol. 113, pp. 54–55, 2011. View at Google Scholar
  37. C. Schinke and J. C. Germani, “Influence of pH and temperature on lipolytic activity of Macrophomina phaseolina,” European Journal of Lipid Science and Technology, vol. 114, p. 248, 2012. View at Google Scholar
  38. H. Zorn, D. E. Breithaupt, M. Takenberg, W. Schwack, and R. G. Berger, “Enzymatic hydrolysis of carotenoid esters of marigold flowers (Tagetes erecta L.) and red paprika (Capsicum annuum L.) by commercial lipases and Pleurotus sapidus extracellular lipase,” Enzyme and Microbial Technology, vol. 32, no. 5, pp. 623–628, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. D. Linke, M. Nimtz, R. G. Berger, and H. Zorn, “Separation of extracellular esterases from pellet cultures of the basidiomycete Pleurotus sapidus by foam fractionation,” Journal of the American Oil Chemists' Society, vol. 86, no. 5, pp. 437–444, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. G. Kouker and K. E. Jaeger, “Specific and sensitive plate assay for bacterial lipases,” Applied and Environmental Microbiology, vol. 53, no. 1, pp. 211–213, 1987. View at Google Scholar · View at Scopus
  41. T. Vorderwülbecke, K. Kieslich, and H. Erdmannt, “Comparison of lipases by different assays,” Enzyme and Microbial Technology, vol. 14, pp. 631–639, 1992. View at Google Scholar
  42. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  43. D. C. Clark, “Application of state-of-the-art fluorescence and interferometric techniques to study coalescence in food dispersions,” in Characterization of Food: Emerging Methods, A. G. Gaonkar, Ed., pp. 23–57, Elsevier, Amsterdam, The Netherlands, 1995. View at Google Scholar
  44. P. J. Wilde, F. A. Husband, D. Cooper et al., “Interfacial mechanisms underlying lipid damage of beer foam,” in Food Colloids, Biopolymers and Materials, E. Dickinson and T. van Vliet, Eds., pp. 200–206, The Royal Society of Chemistry, Cambridge, UK, 2003. View at Google Scholar
  45. J. Varley, A. K. Brown, J. W. R. Boyd, P. W. Dodd, and S. Gallagher, “Dynamic multi-point measurement of foam behaviour for a continuous fermentation over a range of key process variables,” Biochemical Engineering Journal, vol. 20, no. 1, pp. 61–72, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Damodaran, “Protein-stabilized foams and emulsions,” in Food Proteins and Their Applications, S. Damodaran and A. Paraf, Eds., pp. 57–109, Dekker, New York, NY, USA, 1997. View at Google Scholar
  47. P. A. Wierenga and H. Gruppen, “New views on foams from protein solutions,” Current Opinion in Colloid and Interface Science, vol. 15, no. 5, pp. 365–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. A. K. Brown, A. Kaul, and J. Varley, “Continuous foaming for protein recovery—part I. Recovery of β-casein,” Biotechnology and Bioengineering, vol. 62, pp. 278–290, 1999. View at Google Scholar
  49. A. R. Mackie, A. P. Gunning, P. J. Wilde, and V. J. Morris, “Orogenic displacement of protein from the air/water interface by competitive adsorption,” Journal of Colloid and Interface Science, vol. 210, no. 1, pp. 157–166, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Chahinian, L. Nini, E. Boitard, J. P. Dubès, L. C. Comeau, and L. Sarda, “Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG,” Lipids, vol. 37, no. 7, pp. 653–662, 2002. View at Google Scholar · View at Scopus
  51. R. Sharma, Y. Chisti, and U. C. Banerjee, “Production, purification, characterization, and applications of lipases,” Biotechnology Advances, vol. 19, no. 8, pp. 627–662, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. A. L. Willerding, “Lipase activity among bacteria isolated from Amazonian soils,” Enzyme Research, vol. 2011, Article ID 720194, 5 pages, 2011. View at Publisher · View at Google Scholar