Table of Contents Author Guidelines Submit a Manuscript
Enzyme Research
Volume 2016 (2016), Article ID 5098985, 7 pages
http://dx.doi.org/10.1155/2016/5098985
Research Article

Overexpression of Soluble Recombinant Human Lysyl Oxidase by Using Solubility Tags: Effects on Activity and Solubility

1MI-SWACO, Shafter, CA 93263, USA
2University of California, San Francisco, San Francisco, CA 94143, USA
3California State University, Bakersfield, Bakersfield, CA 93311, USA

Received 21 October 2015; Revised 30 December 2015; Accepted 3 January 2016

Academic Editor: Paul Engel

Copyright © 2016 Madison A. Smith et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. M. Kagan and P. C. Trackman, “Properties and function of lysyl oxidase,” American Journal of Respiratory Cell and Molecular Biology, vol. 5, no. 3, pp. 206–210, 1991. View at Publisher · View at Google Scholar · View at Scopus
  2. H. A. Lucero and H. M. Kagan, “Lysyl oxidase: an oxidative enzyme and effector of cell function,” Cellular and Molecular Life Sciences, vol. 63, no. 19-20, pp. 2304–2316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. H. M. Kagan and W. Li, “Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell,” Journal of Cellular Biochemistry, vol. 88, no. 4, pp. 660–672, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Csiszar, “Lysyl oxidases: a novel multifunctional amine oxidase family,” Progress in Nucleic Acid Research and Molecular Biology, vol. 70, pp. 1–32, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Li, G. Liu, I.-N. Chou, and H. M. Kagan, “Hydrogen peroxide-mediated, lysyl oxidase-dependent chemotaxis of vascular smooth muscle cells,” Journal of Cellular Biochemistry, vol. 78, no. 4, pp. 550–557, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. P. C. Trackman, D. Bedell-Hogan, J. Tang, and H. M. Kagan, “Post-translational glycosylation and proteolytic processing of a lysyl oxidase precursor,” The Journal of Biological Chemistry, vol. 267, no. 12, pp. 8666–8671, 1992. View at Google Scholar · View at Scopus
  7. M. V. Panchenko, W. G. Stetler-Stevenson, O. V. Trubetskoy, S. N. Gacheru, and H. M. Kagan, “Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase,” The Journal of Biological Chemistry, vol. 271, no. 12, pp. 7113–7119, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. M. I. Uzel, I. C. Scott, H. Babakhanlou-Chase et al., “Multiple bone morphogenetic protein 1-related mammalian metalloproteinases process pro-lysyl oxidase at the correct physiological site and control lysyl oxidase activation in mouse embryo fibroblast cultures,” The Journal of Biological Chemistry, vol. 276, no. 25, pp. 22537–22543, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. S. N. Gacheru, P. C. Trackman, M. A. Shah et al., “Structural and catalytic properties of copper in lysyl oxidase,” The Journal of Biological Chemistry, vol. 265, no. 31, pp. 19022–19027, 1990. View at Google Scholar · View at Scopus
  10. J. A. Bollinger, D. E. Brown, and D. M. Dooley, “The formation of lysine tyrosylquinone (LTQ) is a self-processing reaction. Expression and characterization of a Drosophila lysyl oxidase,” Biochemistry, vol. 44, no. 35, pp. 11708–11714, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. X. Wang, M. Mure, K. F. Medzihradszky et al., “A crosslinked cofactor in lysyl oxidase: redox function for amino acid side chains,” Science, vol. 273, no. 5278, pp. 1078–1084, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Mure, S. A. Mills, and J. P. Klinman, “Catalytic mechanism of the topa quinone containing copper amine oxidases,” Biochemistry, vol. 41, no. 30, pp. 9269–9278, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. S. T. Jung, M. S. Kim, J. Y. Seo, H. C. Kim, and Y. Kim, “Purification of enzymatically active human lysyl oxidase and lysyl oxidase-like protein from Escherichia coli inclusion bodies,” Protein Expression and Purification, vol. 31, no. 2, pp. 240–246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Ouzzine, A. Boyd, and D. J. Hulmes, “Expression of active, human lysyl oxidase in Escherichia coli,” FEBS Letters, vol. 399, no. 3, pp. 215–219, 1996. View at Publisher · View at Google Scholar
  15. S. E. Herwald, F. T. Greenaway, and K. M. Lopez, “Purification of high yields of catalytically active lysyl oxidase directly from Escherichia coli cell culture,” Protein Expression and Purification, vol. 74, no. 1, pp. 116–121, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. C. A. Lee, A. Lee-Barthel, L. Marquino, N. Sandoval, G. R. Marcotte, and K. Baar, “Estrogen inhibits lysyl oxidase and decreases mechanical function in engineered ligaments,” Journal of Applied Physiology, vol. 118, no. 10, pp. 1250–1257, 2015. View at Publisher · View at Google Scholar
  17. A. Sánchez-Ferrero, Á. Mata, M. A. Mateos-Timoneda et al., “Development of tailored and self-mineralizing citric acid-crosslinked hydrogels for in situ bone regeneration,” Biomaterials, vol. 68, pp. 42–53, 2015. View at Publisher · View at Google Scholar
  18. M. S. Kim, S.-S. Kim, S. T. Jung et al., “Expression and purification of enzymatically active forms of the human lysyl oxidase-like protein 4,” The Journal of Biological Chemistry, vol. 278, no. 52, pp. 52071–52074, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. K. M. Lopez and F. T. Greenaway, “Identification of the copper-binding ligands of lysyl oxidase,” Journal of Neural Transmission, vol. 118, no. 7, pp. 1101–1109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. A. H. Palamakumbura and P. C. Trackman, “A fluorometric assay for detection of lysyl oxidase enzyme activity in biological samples,” Analytical Biochemistry, vol. 300, no. 2, pp. 245–251, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. S. S. Tang, P. C. Trackman, and H. M. Kagan, “Reaction of aortic lysyl oxidase with β-aminopropionitrile,” The Journal of Biological Chemistry, vol. 258, no. 7, pp. 4331–4338, 1983. View at Google Scholar · View at Scopus
  22. H. M. Kagan, V. B. Reddy, M. V. Panchenko et al., “Expression of lysyl oxidase from cDNA constructs in mammalian cells: the propeptide region is not essential to the folding and secretion of the functional enzyme,” Journal of Cellular Biochemistry, vol. 59, no. 3, pp. 329–338, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. D. R. Smyth, M. K. Mrozkiewicz, W. J. McGrath, P. Listwan, and B. Kobe, “Crystal structures of fusion proteins with large-affinity tags,” Protein Science, vol. 12, no. 7, pp. 1313–1322, 2003. View at Publisher · View at Google Scholar · View at Scopus