Table of Contents
Epilepsy Research and Treatment
Volume 2012, Article ID 103160, 15 pages
http://dx.doi.org/10.1155/2012/103160
Review Article

Neocortical Temporal Lobe Epilepsy

1Division of Neurology, University of Toronto, Toronto, ON, Canada
2Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
3Department of Medical Imaging, University of Western Ontario, London, ON, Canada
4Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
5Department of Psychology, University of Western Ontario, London, ON, Canada
6London Health Sciences Centre, B10-110, London, ON, Canada N6A 5A5

Received 20 May 2011; Revised 4 January 2012; Accepted 22 May 2012

Academic Editor: Warren T. Blume

Copyright © 2012 Eduard Bercovici et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Schramm, T. Kral, T. Grunwald, and I. Blümcke, “Surgical treatment for neocortical temporal lobe epilepsy: clinical and surgical aspects and seizure outcome,” Journal of Neurosurgery, vol. 94, no. 1, pp. 33–42, 2001. View at Google Scholar · View at Scopus
  2. S. K. Lee, S. Y. Lee, K. K. Kim, K. S. Hong, D. S. Lee, and C. K. Chung, “Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy,” Annals of Neurology, vol. 58, no. 4, pp. 525–532, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Saygi, S. S. Spencer, R. Scheyer, A. Katz, R. Mattson, and D. D. Spencer, “Differentiation of temporal lobe ictal behavior associated with hippocampal sclerosis and tumors of temporal lobe,” Epilepsia, vol. 35, no. 4, pp. 737–742, 1994. View at Google Scholar · View at Scopus
  4. P. Kotagal, H. O. Luders, G. Williams, T. R. Nichols, and J. McPherson, “Psychomotor seizures of temporal lobe onset: analysis of symptom clusters and sequences,” Epilepsy Research, vol. 20, no. 1, pp. 49–67, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. S. S. Spencer, D. D. Spencer, P. D. Williamson, and R. Mattson, “Combined depth and subdural electrode investigation in uncontrolled epilepsy,” Neurology, vol. 40, no. 1, pp. 74–79, 1990. View at Google Scholar · View at Scopus
  6. S. V. Pacia, O. Devinsky, K. Perrine et al., “Clinical features of neocortical temporal lobe epilepsy,” Annals of Neurology, vol. 40, no. 5, pp. 724–730, 1996. View at Google Scholar · View at Scopus
  7. A. Gil-Nagel and M. W. Risinger, “Ictal semiology in hippocampal versus extrahippocampal temporal lobe epilepsy,” Brain, vol. 120, no. 1, pp. 183–192, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. N. R. Foldvary, N. Lee, G. Thwaites et al., “Clinical and electrographic manifestations of lesional neocortical temporal lobe epilepsy,” Neurology, vol. 49, no. 3, pp. 757–768, 1997. View at Google Scholar · View at Scopus
  9. M. Hajek, A. Antonini, K. L. Leenders, and H. G. Wieser, “Mesiobasal versus lateral temporal lobe epilepsy: metabolic differences in the temporal lobe shown by interictal 18F-FDG positron emission tomography,” Neurology, vol. 43, no. 1, pp. 79–86, 1993. View at Google Scholar · View at Scopus
  10. O. Temkin, The Falling Sickness, The Johns Hopkins University Press, Baltimore, Md, USA, 1945.
  11. J. H. Jackson, Selected Writings of John Hughlings Jackson, vol. 1, 2, Edited by J. Taylor, Staples Press, London, UK, 1958.
  12. E. L. Gibbs, F. A. Gibbs, and B. Fuster, “Psychomotor epilepsy,” Archives of Neurology and Psychiatry, vol. 60, no. 4, pp. 331–339, 1948. View at Google Scholar · View at Scopus
  13. H. Berger, “Über das Elektrenkephalogramm des Menschen,” Archiv für Psychiatrie und Nervenkrankheiten, vol. 87, no. 1, pp. 527–570, 1929. View at Publisher · View at Google Scholar · View at Scopus
  14. L. N. Sutton, R. J. Packer, R. A. Zimmerman, D. A. Bruce, and L. Schut, “Cerebral gangliogliomas of childhood,” Progress in Experimental Tumor Research, vol. 30, pp. 239–246, 1987. View at Google Scholar · View at Scopus
  15. M. A. Falconer, E. A. Serafetinides, and J. A. Corsellis, “Etiology and pathogenesis of temporal lobe epilepsy,” Archives of Neurology, vol. 10, pp. 233–248, 1964. View at Google Scholar · View at Scopus
  16. P. D. Williamson, “Frontal lobe seizures: problems of diagnosis and classification,” in Frontal Lobe Seizures and Epilepsies: Advances in Neurology, P. Chauvel, A. Delgado-Escueta, E. Halgren, and J. Bancaud, Eds., pp. 289–309, Raven Press, New York, NY, USA, 1992. View at Google Scholar
  17. J. A. French, P. D. Williamson, V. M. Thadani et al., “Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination,” Annals of Neurology, vol. 34, no. 6, pp. 774–780, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. P. D. Williamson, J. J. Engel, and C. Munari, “Anatomic classification of localization-related epilepsies,” in Epilepsy: A Comprehensive Textbook, J. J. Engel and T. A. Pedley, Eds., pp. 2405–2416, Lippincott-Raven, Philadelphia, Pa, USA, 1997. View at Google Scholar
  19. H. G. Wieser, Electroclinical Features of Psychomotor Seizure, Butterworths, London, UK, 1983.
  20. J. Roger, F. E. Dreifuss, M. Martinez-Lage et al., “Proposal for revised classification of epilepsies and epileptic syndromes,” Epilepsia, vol. 30, no. 4, pp. 389–399, 1989. View at Google Scholar · View at Scopus
  21. S. S. Spencer, N. K. So, J. J. Engel et al., “Depth electrodes,” in Surgical Treatment of the Epilepsies, J. J. Engel, Ed., pp. 359–376, Raven Press, New York, NY, USA, 1993. View at Google Scholar
  22. T. S. Walczak, “Neocortical temporal lobe epilepsy: characterizing the syndrome,” Epilepsia, vol. 36, no. 7, pp. 633–635, 1995. View at Google Scholar · View at Scopus
  23. P. Gloor, A. Olivier, and L. F. Quesney, “The role of the limbic system in experimental phenomena of temporal lobe epilepsy,” Annals of Neurology, vol. 12, no. 2, pp. 129–144, 1982. View at Google Scholar · View at Scopus
  24. W. T. Blume, J. P. Girvin, and P. Stenerson, “Temporal neocortical role in ictal experiential phenomena,” Annals of Neurology, vol. 33, no. 1, pp. 105–107, 1993. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Kotagal, H. O. Luders, G. Williams, T. R. Nichols, and J. McPherson, “Psychomotor seizures of temporal lobe onset: analysis of symptom clusters and sequences,” Epilepsy Research, vol. 20, no. 1, pp. 49–67, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. L. Maillard, J. P. Vignal, M. Gavaret et al., “Semiologic and electrophysiologic correlations in temporal lobe seizure subtypes,” Epilepsia, vol. 45, no. 12, pp. 1590–1599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. T. J. O'Brien, C. Kilpatrick, V. Murrie, S. Vogrin, K. Morris, and M. J. Cook, “Temporal lobe epilepsy caused by mesial temporal sclerosis and temporal neocortical lesions: a clinical and electroencephalographic study of 46 pathologically proven cases,” Brain, vol. 119, no. 6, pp. 2133–2143, 1996. View at Google Scholar · View at Scopus
  28. J. J. Poza, A. Saenz, A. Martinez-Gil et al., “Autosomal dominant lateral temporal lobe epilepsy: clinical and genetic study of a large basque pedigree linked to chromosome 10q,” Annals of Neurology, vol. 45, pp. 182–188, 1999. View at Google Scholar
  29. R. Michelucci, J. J. Poza, V. Sofia et al., “Autosomal dominant lateral temporal epilepsy: clinical spectrum, new epitempin mutations, and genetic heterogeneity in seven european families,” Epilepsia, vol. 44, no. 10, pp. 1289–1297, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. P. Hedera, B. Abou-Khalil, A. E. Crunk, K. A. Taylor, J. L. Haines, and J. S. Sutcliffe, “Autosomal dominant lateral temporal epilepsy: two families with novel mutations in the LGI1 gene,” Epilepsia, vol. 45, no. 3, pp. 218–222, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Y. Lee, S. K. Lee, C. H. Yun et al., “Clinico-electrical characteristics of lateral temporal lobe epilepsy, anterior and posterior lateral temproal lobe epilepsy,” Journal of Clinical Neurology, vol. 2, pp. 118–125, 2006. View at Publisher · View at Google Scholar
  32. S. Dupont, F. Semah, P. Boon et al., “Association of ipsilateral motor automatisms and contralateral dystonic posturing: a clinical feature differentiating medial from neocortical temporal lobe epilepsy,” Archives of Neurology, vol. 56, no. 8, pp. 927–932, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Penfield and H. Jasper, Epilepsy and Functional Anatomy of the Human Brain, Little Brown and Company, Boston, Mass, USA, 1954.
  34. T. Mihara, Y. Inoue, T. Hiyoshi et al., “Localizing value of seizure manifestations of temporal lobe epilepsies and the consequence of analyzing their sequential appearance,” Japanese Journal of Psychiatry and Neurology, vol. 47, no. 2, pp. 175–182, 1993. View at Google Scholar · View at Scopus
  35. I. Anand, P. Kotagal, J. Hammel et al., “Seizure semiology of lateral versus mesial temporal lobe epilepsy using statistical analysis,” Neurology, vol. 48, pp. A240–A241, 1997. View at Google Scholar
  36. D. W. King and C. A. Marson, “Clinical features and epileptic patterns with EEG temporal lobe foci,” Annals of Neurology, vol. 2, pp. 138–147, 1977. View at Publisher · View at Google Scholar
  37. M. Duchowny, P. Jayakar, T. Resnick, B. Levin, and L. Alvarez, “Posterior temporal epilepsy: electroclinical features,” Annals of Neurology, vol. 35, no. 4, pp. 427–431, 1994. View at Google Scholar · View at Scopus
  38. M. Pfänder, S. Arnold, A. Henkel et al., “Clinical features and EEG findings differentiating mesial from neocortical temporal lobe epilepsy,” Epileptic Disorders, vol. 4, no. 3, pp. 189–195, 2002. View at Google Scholar · View at Scopus
  39. M. Koutroumanidis, C. D. Binnie, R. D. C. Elwes et al., “Interictal regional slow activity in temporal lobe epilepsy correlates with lateral temporal hypometabolism as imaged with 18FDG PET: neurophysiological and metabolic implications,” Journal of Neurology Neurosurgery and Psychiatry, vol. 65, no. 2, pp. 170–176, 1998. View at Google Scholar · View at Scopus
  40. R. S. Burgerman, M. R. Sperling, J. A. French, A. J. Saykin, and M. J. O'Connor, “Comparison of mesial versus neocortical onset temporal lobe seizures: neurodiagnostic findings and surgical outcome,” Epilepsia, vol. 36, no. 7, pp. 662–670, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. N. So, P. Gloor, L. F. Quesney, M. Jones-Gotman, A. Olivier, and F. Andermann, “Depth electrode investigations in patients with bitemporal epileptiform abnormalities,” Annals of Neurology, vol. 25, no. 5, pp. 423–431, 1989. View at Google Scholar · View at Scopus
  42. T. Walczak, C. Bazil, N. Lee et al., “Scalp ictal EEG differs in temporal neocortical and hippocampal seizures,” Epilepsia, vol. 35, article 134, 1994. View at Google Scholar
  43. M. W. Risinger, J. Engel, P. C. van Ness, T. R. Henry, and P. H. Crandall, “Ictal localization of temporal lobe seizures with scalp/sphenoidal recordings,” Neurology, vol. 39, no. 10, pp. 1288–1293, 1989. View at Google Scholar · View at Scopus
  44. J. S. Ebersole and S. V. Pacia, “Localization of temporal lobe foci by ictal EEG patterns,” Epilepsia, vol. 37, no. 4, pp. 386–399, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. S. V. Pacia and J. S. Ebersole, “Intracranial EEG substrates of scalp ictal patterns from temporal lobe foci,” Epilepsia, vol. 38, no. 6, pp. 642–654, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. N. J. Azar, A. H. Lagrange, and B. W. Abou-Khalil, “Transitional sharp waves at ictal onset—a neocortical ictal pattern,” Clinical Neurophysiology, vol. 120, no. 4, pp. 665–672, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Janszky, H. W. Pannek, A. Fogarasi et al., “Prognostic factors for surgery of neocortical temporal lobe epilepsy,” Seizure, vol. 15, no. 2, pp. 125–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. C. H. Yun, S. K. Lee, S. Y. Lee, K. K. Kim, S. W. Jeong, and C. K. Chung, “Prognostic factors in neocortical epilepsy surgery: multivariate analysis,” Epilepsia, vol. 47, no. 3, pp. 574–579, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. W. T. Blume, G. M. Holloway, and S. Wiebe, “Temporal epileptogenesis: localizing value of scalp and subdural interictal and ictal EEG data,” Epilepsia, vol. 42, no. 4, pp. 508–514, 2001. View at Publisher · View at Google Scholar · View at Scopus
  50. N. K. So, “Depth electrode studies in mesial temporal epilepsy,” in Epilepsy Surgery, H. O. Luders, Ed., pp. 371–384, Raven Press, New York, NY, USA, 1991. View at Google Scholar
  51. M. Carreno and H. O. Luders, “General principles of presurgical evaluation,” in Epilepsy Surgery, H. O. Luders and U. G. Comair, Eds., pp. 185–190, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2nd edition, 2001. View at Google Scholar
  52. I. I. Goncharova, H. P. Zaveri, R. B. Duckrow, E. J. Novotny, and S. S. Spencer, “Spatial distribution of intracranially recorded spikes in medial and lateral temporal epilepsies,” Epilepsia, vol. 50, no. 12, pp. 2575–2585, 2009. View at Google Scholar · View at Scopus
  53. J. Gotman and D. J. Koffler, “Interictal spiking increases after seizures but does not after decrease in medication,” Electroencephalography and Clinical Neurophysiology, vol. 72, no. 1, pp. 7–15, 1989. View at Google Scholar · View at Scopus
  54. A. Hufnagel, M. Dümpelmann, J. Zentner, O. Schijns, and C. E. Elger, “Clinical relevance of quantified intracranial interictal spike activity in presurgical evaluation of epilepsy,” Epilepsia, vol. 41, no. 4, pp. 467–478, 2000. View at Google Scholar · View at Scopus
  55. K. Perrine, O. Devinsky, S. Uysal, D. J. Luciano, and M. Dogali, “Left temporal neocortex mediation of verbal memory: evidence from functional mapping with cortical stimulation,” Neurology, vol. 44, no. 10, pp. 1845–1850, 1994. View at Google Scholar · View at Scopus
  56. J. X. Tao, X. J. Chen, M. Baldwin et al., “Interictal regional delta slowing is an EEG marker of epileptic network in temporal lobe epilepsy,” Epilepsia, vol. 52, no. 3, pp. 467–476, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. S. S. Spencer, P. Guimaraes, A. Katz, J. Kim, and D. Spencer, “Morphological patterns of seizures recorded intracranially,” Epilepsia, vol. 33, no. 3, pp. 537–545, 1992. View at Publisher · View at Google Scholar · View at Scopus
  58. J. P. Lieb, J. Engel, and T. L. Babb, “Interhemispheric propagation time of human hippocampal seizures: I. Relationship to surgical outcome,” Epilepsia, vol. 27, no. 3, pp. 286–293, 1986. View at Google Scholar · View at Scopus
  59. R. L. Kutsy, D. F. Farrell, and G. A. Ojemann, “Ictal patterns of neocortical seizures monitored with intracranial electrodes: correlation with surgical outcome,” Epilepsia, vol. 40, no. 3, pp. 257–266, 1999. View at Google Scholar · View at Scopus
  60. J. P. Lieb, J. Engel, and W. J. Brown, “Neuropathological findings following temporal lobectomy related to surface and deep EEG patterns,” Epilepsia, vol. 22, no. 5, pp. 539–549, 1981. View at Google Scholar · View at Scopus
  61. W. Y. Jung, S. V. Pacia, and O. Devinsky, “Neocortical temporal lobe epilepsy: intracranial EEG features and surgical outcome,” Journal of Clinical Neurophysiology, vol. 16, no. 5, pp. 419–425, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. D. L. A. Camacho and M. Castillo, “MR Imaging of temporal lobe epilepsy,” Seminars in Ultrasound, CT and MRI, vol. 28, no. 6, pp. 424–436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. M. R. Q. Pascual, “Temporal lobe epilepsy: clinical semiology and neurophysiological studies,” Seminars in Ultrasound, CT and MRI, vol. 28, no. 6, pp. 416–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Tassi, A. Meroni, F. Deleo et al., “Temporal lobe epilepsy: neuropathological and clinical correlations in 243 surgically treated patients,” Epileptic Disorders, vol. 11, no. 4, pp. 281–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. S. F. Berkovic et al., “ILAE neuroimaging commission recommendations for neuroimaging of persons with refractory epilepsy,” Epilepsia, vol. 39, pp. 1375–1376, 1998. View at Google Scholar
  66. N. K. Focke, M. R. Symms, J. L. Burdett, and J. S. Duncan, “Voxel-based analysis of whole brain FLAIR at 3T detects focal cortical dysplasia,” Epilepsia, vol. 49, no. 5, pp. 786–793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. N. K. Focke, S. B. Bonelli, M. Yogarajah, C. Scott, M. R. Symms, and J. S. Duncan, “Automated normalized FLAIR imaging in MRI-negative patients with refractory focal epilepsy,” Epilepsia, vol. 50, no. 6, pp. 1484–1490, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Kuba, I. Tyrlíková, J. Chrastina et al., “‘MRI-negative PET-positive’ temporal lobe epilepsy: invasive EEG findings, histopathology, and postoperative outcomes,” Epilepsy & Behavior, vol. 22, pp. 537–541, 2011. View at Google Scholar
  69. Y. K. Kim, D. S. Lee, S. K. Lee et al., “Differential features of metabolic abnormalities between medial and lateral temporal lobe epilepsy: quantitative analysis of 18F-FDG PET using SPM,” Journal of Nuclear Medicine, vol. 44, no. 7, pp. 1006–1012, 2003. View at Google Scholar · View at Scopus
  70. M. Hajek, A. Antonini, K. L. Leenders, and H. G. Wieser, “Mesiobasal versus lateral temporal lobe epilepsy: metabolic differences in the temporal lobe shown by interictal 18F-FDG positron emission tomography,” Neurology, vol. 43, no. 1, pp. 79–86, 1993. View at Google Scholar · View at Scopus
  71. P. Dupont, W. van Paesschen, A. Palmini et al., “Ictal perfusion patterns associated with single MRI-visible focal dysplastic lesions: implications for the noninvasive delineation of the epileptogenic zone,” Epilepsia, vol. 47, no. 9, pp. 1550–1557, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. S. S. Ho, S. F. Berkovic, W. J. McKay, R. M. Kalnins, and P. F. Bladin, “Temporal lobe epilepsy subtypes: differential patterns of cerebral perfusion on ictal SPECT,” Epilepsia, vol. 37, no. 8, pp. 788–795, 1996. View at Google Scholar · View at Scopus
  73. N. J. Kazemi, G. A. Worrell, S. M. Stead et al., “Ictal SPECT statistical parametric mapping in temporal lobe epilepsy surgery,” Neurology, vol. 74, no. 1, pp. 70–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. J. R. Binder, S. J. Swanson, T. A. Hammeke et al., “Determination of language dominance using functional MRI: a comparison with the Wada test,” Neurology, vol. 46, no. 4, pp. 978–984, 1996. View at Google Scholar
  75. F. G. Woermann, H. Jokeit, R. Luerding et al., “Language lateralization by Wada test and fMRI in 100 patients with epilepsy,” Neurology, vol. 61, no. 5, pp. 699–701, 2003. View at Google Scholar · View at Scopus
  76. J. E. Adcock, R. G. Wise, J. M. Oxbury, S. M. Oxbury, and P. M. Matthews, “Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy,” NeuroImage, vol. 18, no. 2, pp. 423–438, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. M. M. Berl, L. M. Balsamo, B. Xu et al., “Seizure focus affects regional language networks assessed by fMRI,” Neurology, vol. 65, no. 10, pp. 1604–1611, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Janszky, M. Mertens, I. Janszky, A. Ebner, and F. G. Woermann, “Left-sided interictal epileptic activity induces shift of language lateralization in temporal lobe epilepsy: an fMRI study,” Epilepsia, vol. 47, no. 5, pp. 921–927, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. K. G. Davies, B. D. Bell, A. J. Bush, B. P. Hermann, F. C. Dohan, and A. S. Jaap, “Naming decline after left anterior temporal lobectomy correlates with pathological status of resected hippocampus,” Epilepsia, vol. 39, no. 4, pp. 407–419, 1998. View at Publisher · View at Google Scholar · View at Scopus
  80. W. D. Gaillard, M. M. Berl, E. N. Moore et al., “Atypical language in lesional and nonlesional complex partial epilepsy,” Neurology, vol. 69, no. 18, pp. 1761–1771, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. Z. Wang, J. R. Ives, and S. M. Mirsattari, “Simultaneous electroencephalogram-functional magnetic resonance imaging in neocortical epilepsies,” in Advances in Neurology-Intractable Epilepsies, W. T. Blume, Ed., vol. 97, chapter 15, pp. 129–139, Lippincott Williams & Wilkins, New York, NY, USA, 2006. View at Google Scholar
  82. E. Formaggio, S. F. Storti, A. Bertoldo, P. Manganotti, A. Fiaschi, and G. M. Toffolo, “Integrating EEG and fMRI in epilepsy,” NeuroImage, vol. 54, no. 4, pp. 2719–2731, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Ogawa, D. W. Tank, R. Menon et al., “Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 13, pp. 5951–5955, 1992. View at Publisher · View at Google Scholar · View at Scopus
  84. A. Salek-Haddadi, B. Diehl, K. Hamandi et al., “Hemodynamic correlates of epileptiform discharges: an EEG-fMRI study of 63 patients with focal epilepsy,” Brain Research, vol. 1088, no. 1, pp. 148–166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Gotman, C. G. Bénar, and F. Dubeau, “Combining EEG and fMRI in epilepsy: methodological challenges and clinical results,” Journal of Clinical Neurophysiology, vol. 21, no. 4, pp. 229–240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Al-Asmi, C. G. Bénar, D. W. Gross et al., “fMRI activation in continuous and spike-triggered EEG-fMRI studies of epileptic spikes,” Epilepsia, vol. 44, no. 10, pp. 1328–1339, 2003. View at Publisher · View at Google Scholar · View at Scopus
  87. P. Federico, J. S. Archer, D. F. Abbott, and G. D. Jackson, “Cortical/subcortical BOLD changes associated with epileptic discharges: an EEG-fMRI study at 3 T,” Neurology, vol. 64, no. 7, pp. 1125–1130, 2005. View at Google Scholar · View at Scopus
  88. Y. Aghakhani, E. Kobayashi, A. P. Bagshaw et al., “Cortical and thalamic fMRI responses in partial epilepsy with focal and bilateral synchronous spikes,” Clinical Neurophysiology, vol. 117, no. 1, pp. 177–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. E. Kobayashi, A. P. Bagshaw, C. Grova, F. Dubeau, and J. Gotman, “Negative BOLD responses to epileptic spikes,” Human Brain Mapping, vol. 27, no. 6, pp. 488–497, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. J. S. Archer, R. S. Briellmann, A. Syngeniotis, D. F. Abbott, and G. D. Jackson, “Spike-triggered fMRI in reading epilepsy: involvement of left frontal cortex working memory area,” Neurology, vol. 60, no. 3, pp. 415–421, 2003. View at Google Scholar · View at Scopus
  91. C. S. Hawco, A. P. Bagshaw, Y. Lu, F. Dubeau, and J. Gotman, “BOLD changes occur prior to epileptic spikes seen on scalp EEG,” NeuroImage, vol. 35, no. 4, pp. 1450–1458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. M. Zijlmans, G. Huiskamp, M. Hersevoort, J. H. Seppenwoolde, A. C. van Huffelen, and F. S. S. Leijten, “EEG-fMRI in the preoperative work-up for epilepsy surgery,” Brain, vol. 130, part 9, pp. 2343–2353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Grova, J. Daunizeau, E. Kobayashi et al., “Concordance between distributed EEG source localization and simultaneous EEG-fMRI studies of epileptic spikes,” NeuroImage, vol. 39, no. 2, pp. 755–774, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. F. Lazeyras, O. Blanke, S. Perrig et al., “EEG-triggered functional MRI in patients with pharmacoresistant epilepsy,” Journal of Magnetic Resonance Imaging, vol. 12, pp. 177–185, 2000. View at Google Scholar
  95. R. Thornton, H. Laufs, and R. Rodionov, EEG-Correlated fMRI and Post-Operative Outcome in Focal Epilepsy, European Epilepsy Congress, Berlin, Germany, 2008.
  96. R. J. Staba, C. L. Wilson, A. Bragin, and I. Fried, “Quantitative analysis of high-frequency oscillations (80–500 Hz) recorded in human epileptic hippocampus and entorhinal cortex,” Journal of Neurophysiology, vol. 88, no. 4, pp. 1743–1752, 2002. View at Google Scholar · View at Scopus
  97. A. Bragin, C. L. Wilson, J. Almajano, I. Mody, and J. Engel, “High-frequency oscillations after status epilepticus: epileptogenesis and seizure genesis,” Epilepsia, vol. 45, no. 9, pp. 1017–1023, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. J. D. Jirsch, E. Urrestarazu, P. LeVan, A. Olivier, F. Dubeau, and J. Gotman, “High-frequency oscillations during human focal seizures,” Brain, vol. 129, no. 6, pp. 1593–1608, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Lévesque, A. Bortel, J. Gotman, and M. Avoli, “High-frequency (80–500 Hz) oscillations and epileptogenesis in temporal lobe epilepsy,” Neurobiology of Disease, vol. 42, no. 3, pp. 231–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  100. E. Urrestarazu, R. Chander, F. Dubeau, and J. Gotman, “Interictal high-frequency oscillations (10–500 Hz) in the intracerebral EEG of epileptic patients,” Brain, vol. 130, no. 9, pp. 2354–2366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. J. Jacobs, P. LeVan, R. Chander, J. Hall, F. Dubeau, and J. Gotman, “Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain,” Epilepsia, vol. 49, no. 11, pp. 1893–1907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. H. Khosravani, N. Mehrotra, M. Rigby et al., “Spatial localization and time-dependant changes of electrographic high frequency oscillations in human temporal lobe epilepsy,” Epilepsia, vol. 50, no. 4, pp. 605–616, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Bragin, J. Engel Jr., and R. J. Staba, “High-frequency oscillations in epileptic brain,” Current Opinion in Neurology, vol. 23, no. 2, pp. 151–156, 2010. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Zijlmans, J. Jacobs, Y. U. Kahn, R. Zelmann, F. Dubeau, and J. Gotman, “Ictal and interictal high frequency oscillations in patients with focal epilepsy,” Clinical Neurophysiology, vol. 122, no. 4, pp. 664–671, 2011. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Jacobs, P. Levan, C. D. Chatillon, A. Olivier, F. Dubeau, and J. Gotman, “High frequency oscillations in intracranial EEGs mark epileptogenicity rather than lesion type,” Brain, vol. 132, no. 4, pp. 1022–1037, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Zijlmans, J. Jacobs, R. Zelmann, F. Dubeau, and J. Gotman, “High-frequency oscillations mirror disease activity in patients with epilepsy,” Neurology, vol. 72, no. 11, pp. 979–986, 2009. View at Publisher · View at Google Scholar · View at Scopus
  107. J. Jacobs, K. Kobayashi, and J. Gotman, “High-frequency changes during interictal spikes detected by time-frequency analysis,” Clinical Neurophysiology, vol. 122, no. 1, pp. 32–42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. G. A. Worrell, L. Parish, S. D. Cranstoun, R. Jonas, G. Baltuch, and B. Litt, “High-frequency oscillations and seizure generation in neocortical epilepsy,” Brain, vol. 127, no. 7, pp. 1496–1506, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. J. Jacobs, M. Zijlmans, R. Zelmann et al., “High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery,” Annals of Neurology, vol. 67, no. 2, pp. 209–220, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. H. Stefan, S. Rampp, and R. C. Knowlton, “Magnetoencephalography adds to the surgical evaluation process,” Epilepsy and Behavior, vol. 20, no. 2, pp. 172–177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. W. W. Sutherling, A. N. Mamelak, D. Thyerlei et al., “Influence of magnetic source imaging for planning intracranial EEG in epilepsy,” Neurology, vol. 71, no. 13, pp. 990–996, 2008. View at Publisher · View at Google Scholar · View at Scopus
  112. H. Shibasaki, A. Ikeda, and T. Nagamine, “Use of magnetoencephalography in the presurgical evaluation of epilepsy patients,” Clinical Neurophysiology, vol. 118, no. 7, pp. 1438–1448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  113. R. C. Knowlton, K. D. Laxer, M. J. Aminoff, T. P. L. Roberts, S. T. C. Wong, and H. A. Rowley, “Magnetoencephalography in partial epilepsy: clinical yield and localization accuracy,” Annals of Neurology, vol. 42, no. 4, pp. 622–631, 1997. View at Publisher · View at Google Scholar · View at Scopus
  114. R. C. Knowlton and J. Shih, “Magnetoencephalography in epilepsy,” Epilepsia, vol. 45, no. 4, pp. 61–71, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. C. Baumgartner, E. Pataraia, G. Lindinger, and L. Deecke, “Neuromagnetic recordings in temporal lobe epilepsy,” Journal of Clinical Neurophysiology, vol. 17, no. 2, pp. 177–189, 2000. View at Google Scholar · View at Scopus
  116. M. Iwasaki, N. Nakasato, H. Shamoto et al., “Surgical implications of neuromagnetic spike localization in temporal lobe epilepsy,” Epilepsia, vol. 43, no. 4, pp. 415–424, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Knake, E. Halgren, H. Shiraishi et al., “The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients,” Epilepsy Research, vol. 69, no. 1, pp. 80–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. H. Park, N. Nakasato, M. Iwasaki et al., “Detectability of convexity spikes by conventional EEG and helmet MEG,” in Biomag 2002: Proceedings of the Thirteenth International Conference on Biomagnetism, H. Nowak, J. Haueisen, F. Giessler, and R. Huonker, Eds., pp. 260–262, VDE Verlag GMBH, Berlin, Germany, 2002. View at Google Scholar
  119. C. Tilz, C. Hummel, B. Kettenmann, and H. Stefan, “Ictal onset localization of epileptic seizures by magnetoencephalography,” Acta Neurologica Scandinavica, vol. 106, no. 4, pp. 190–195, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. D. S. Eliashiv, S. M. Elsas, K. Squires, I. Fried, and J. Engel, “Ictal magnetic source imaging as a localizing tool in partial epilepsy,” Neurology, vol. 59, no. 10, pp. 1600–1610, 2002. View at Google Scholar · View at Scopus
  121. J. Xiang, Y. Liu, Y. Wang et al., “Frequency and spatial characteristics of high-frequency neuromagnetic signals in childhood epilepsy,” Epileptic Disorders, vol. 11, no. 2, pp. 113–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  122. C. C. Gallen, D. F. Sobel, T. Waltz et al., “Noninvasive presurgical neuromagnetic mapping of somatosensory cortex,” Neurosurgery, vol. 33, no. 2, pp. 260–268, 1993. View at Google Scholar · View at Scopus
  123. S. M. Bowyer, T. Fleming, M. L. Greenwald et al., “Magnetoencephalographic localization of the basal temporal language area,” Epilepsy and Behavior, vol. 6, no. 2, pp. 229–234, 2005. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Paulini, M. Fischer, S. Rampp et al., “Lobar localization information in epilepsy patients: MEG-A useful tool in routine presurgical diagnosis,” Epilepsy Research, vol. 76, no. 2-3, pp. 124–130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  125. R. Ramachandrannair, H. Otsubo, M. M. Shroff et al., “MEG predicts outcome following surgery for intractable epilepsy in children with normal or nonfocal MRI findings,” Epilepsia, vol. 48, no. 1, pp. 149–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. M. Lau, D. Yam, and J. G. Burneo, “A systematic review on MEG and its use in the presurgical evaluation of localization-related epilepsy,” Epilepsy Research, vol. 79, no. 2, pp. 97–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  127. J. Engel Jr. and T. A. Pedley, Epilepsy: A Comprehensive Text Book, vol. 3, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2nd edition, 2007.
  128. F. Morrell, W. W. Whisler, and T. P. Bleck, “Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy,” Journal of Neurosurgery, vol. 70, no. 2, pp. 231–239, 1989. View at Google Scholar · View at Scopus
  129. G. D. Cascino, P. J. Kelly, K. A. Hirschorn, W. R. Marsh, and F. W. Sharbrough, “Stereotactic resection of intra-axial cerebral lesions in partial epilepsy,” Mayo Clinic Proceedings, vol. 65, no. 8, pp. 1053–1060, 1990. View at Google Scholar · View at Scopus
  130. P. C. van Ness, I. A. Awad, H. O. Luders et al., “The relationship of epileptogenic zone resection, lesion resection and outcome in 27 cases with neocortical epilepsy,” Annals of Neurology, vol. 28, article 236, 1991. View at Google Scholar
  131. M. Keogan, M. S. Peng, P. T. Burke et al., “Temporal neocorticectomy in management of intractable epilepsy: long-term outcome and predictive factors,” Epilepsia, vol. 33, no. 5, pp. 852–861, 1992. View at Publisher · View at Google Scholar · View at Scopus
  132. J. Engel Jr., S. Wiebe, J. French et al., “Practice parameter: temporal lobe and localized neocortical resections for epilepsy: report of the quality standards subcommittee of the american academy of neurology, in association with the american epilepsy society and the american association of neurological surgeons,” Neurology, vol. 60, no. 4, pp. 538–547, 2003. View at Google Scholar · View at Scopus
  133. D. W. Kim, H. K. Kim, S. K. Lee, K. Chu, and C. K. Chung, “Extent of neocortical resection and surgical outcome of epilepsy: intracranial EEG analysis,” Epilepsia, vol. 51, no. 6, pp. 1010–1017, 2010. View at Publisher · View at Google Scholar · View at Scopus