Table of Contents
Epilepsy Research and Treatment
Volume 2014 (2014), Article ID 236309, 11 pages
http://dx.doi.org/10.1155/2014/236309
Research Article

The Peptide Network between Tetanus Toxin and Human Proteins Associated with Epilepsy

1Brain and Language Laboratory, Cluster of Excellence “Languages of Emotions”, Free University of Berlin, 14195 Berlin, Germany
2Faculty of Biology & Medicine, University of Lausanne, CH-1011 Lausanne, Switzerland
3Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy

Received 7 March 2014; Revised 24 April 2014; Accepted 13 May 2014; Published 1 June 2014

Academic Editor: A. Vezzani

Copyright © 2014 Guglielmo Lucchese et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. D. Ferrie, “Idiopathic generalized epilepsies imitating focal epilepsies,” Epilepsia, vol. 46, no. 9, pp. 91–95, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. E. C. Wirrell, B. R. Grossardt, E. L. So, and K. C. Nickels, “A population-based study of long-term outcomes of cryptogenic focal epilepsy in childhood: cryptogenic epilepsy is NOT probably symptomatic epilepsy,” Epilepsia, vol. 52, no. 4, pp. 738–745, 2011. View at Google Scholar
  3. A. T. Berg, “Epilepsy, cognition, and behavior: the clinical picture,” Epilepsia, vol. 52, supplement 1, pp. 7–12, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. U. Stephani, “The natural history of myoclonic astatic epilepsy (Doose syndrome) and Lennox-Gastaut syndrome,” Epilepsia, vol. 47, supplement 2, pp. 53–55, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. J. Chu-Shore, P. Major, S. Camposano, D. Muzykewicz, and E. A. Thiele, “The natural history of epilepsy in tuberous sclerosis complex,” Epilepsia, vol. 51, no. 7, pp. 1236–1241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Gaspard and L. J. Hirsch, “Pitfalls in ictal EEG interpretation: critical care and intracranial recordings,” Neurology, vol. 80, supplement 1, pp. S26–S42, 2013. View at Google Scholar · View at Scopus
  7. A. T. Berg, S. F. Berkovic, M. J. Brodie et al., “Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009,” Epilepsia, vol. 51, no. 4, pp. 676–685, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. C. P. Panayiotopoulos, “The new ILAE report on terminology and concepts for the organization of epilepsies: critical review and contribution,” Epilepsia, vol. 53, no. 3, pp. 399–404, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Avanzini, “A sound conceptual framework for an epilepsy classification is still lacking,” Epilepsia, vol. 51, no. 4, pp. 720–722, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Ottman, J. F. Annegers, N. Risch, W. A. Hauser, and M. Susser, “Relations of genetic and environmental factors in the etiology of epilepsy,” Annals of Neurology, vol. 39, no. 4, pp. 442–449, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Wang and Y. Lu, “Genetic etiology of new forms of familial epilepsy,” Frontiers in Bioscience, vol. 13, no. 8, pp. 3159–3167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Martínez, M. A. López-Aríztegui, N. Puente, I. Rubio, and M. I. Tejada, “CDKL5 gene status in female patients with epilepsy and Rett-like features: two new mutations in the catalytic domain,” BMC Medical Genetics, vol. 13, article 68, 2012. View at Google Scholar
  13. A. Vezzani, J. French, T. Bartfai, and T. Z. Baram, “The role of inflammation in epilepsy,” Nature Reviews Neurology, vol. 7, no. 1, pp. 31–40, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Takahashi, K. Matsuda, Y. Kubota et al., “Vaccination and infection as causative factors in Japanese patients with Rasmussen syndrome: molecular mimicry and HLA class I,” Clinical and Developmental Immunology, vol. 13, no. 2–4, pp. 381–387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. W. H. Theodore, L. Epstein, W. D. Gaillard, S. Shinnar, M. S. Wainwright, and S. Jacobson, “Human herpes virus 6B: a possible role in epilepsy?” Epilepsia, vol. 49, no. 11, pp. 1828–1837, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Libbey and R. S. Fujinami, “Neurotropic viral infections leading to epilepsy: focus on Theiler's murine encephalomyelitis virus,” Future Virology, vol. 6, no. 11, pp. 1339–1350, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Bozzi, S. Casarosa, and M. Caleo, “Epilepsy as a neurodevelopmental disorder,” Frontiers in Psychiatry, vol. 3, article 19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Sgadò, M. Dunleavy, S. Genovesi, G. Provenzano, and Y. Bozzi, “The role of GABAergic system in neurodevelopmental disorders: a focus on autism and epilepsy,” International Journal of Physiology, Pathophysiology and Pharmacology, vol. 3, no. 3, pp. 223–235, 2011. View at Google Scholar · View at Scopus
  19. R. Tuchman and M. Cuccaro, “Epilepsy and autism: neurodevelopmental perspective,” Current Neurology and Neuroscience Reports, vol. 11, no. 4, pp. 428–434, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. R. J. Hagerman, “Epilepsy drives autism in neurodevelopmental disorders,” Developmental Medicine and Child Neurology, vol. 55, no. 2, pp. 101–102, 2013. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. van Eeghen, M. B. Pulsifer, V. L. Merker et al., “Understanding relationships between autism, intelligence, and epilepsy: a cross-disorder approach,” Developmental Medicine and Child Neurology, vol. 55, no. 2, pp. 146–153, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. S. N. Rakhade and F. E. Jensen, “Epileptogenesis in the immature brain: emerging mechanisms,” Nature Reviews Neurology, vol. 5, no. 7, pp. 380–391, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. M. Dubé, A. L. Brewster, C. Richichi, Q. Zha, and T. Z. Baram, “Fever, febrile seizures and epilepsy,” Trends in Neurosciences, vol. 30, no. 10, pp. 490–496, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Palace and B. Lang, “Epilepsy: an autoimmune disease?” Journal of Neurology Neurosurgery and Psychiatry, vol. 69, no. 6, pp. 711–714, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Najjar, M. Bernbaum, G. Lai, and O. Devinsky, “Immunology and epilepsy,” Reviews in Neurological Diseases, vol. 5, no. 3, pp. 109–116, 2008. View at Google Scholar · View at Scopus
  26. E. Pineda, D. Shin, S. J. You, S. Auvin, R. Sankar, and A. Mazarati, “Maternal immune activation promotes hippocampal kindling epileptogenesis in mice,” Annals of Neurology, vol. 74, no. 1, pp. 11–19, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Nabbout, “Autoimmune and inflammatory epilepsies,” Epilepsia, vol. 53, no. 4, pp. 58–62, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Vincent and P. B. Crino, “Systemic and neurologic autoimmune disorders associated with seizures or epilepsy,” Epilepsia, vol. 52, supplement 3, pp. 12–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Granata, H. Cross, W. Theodore, and G. Avanzini, “Immune-mediated epilepsies,” Epilepsia, vol. 52, supplement 3, pp. 5–11, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Vezzani and S. Rüegg, “The pivotal role of immunity and inflammatory processes in epilepsy is increasingly recognized: introduction,” Epilepsia, vol. 52, supplement 3, pp. 1–4, 2011. View at Google Scholar · View at Scopus
  31. N. Specchio, L. Fusco, D. Claps, and F. Vigevano, “Epileptic encephalopathy in children possibly related to immune-mediated pathogenesis,” Brain & Development, vol. 32, no. 1, pp. 51–56, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. K. M. Rodgers, M. R. Hutchinson, A. Northcutt, S. F. Maier, L. R. Watkins, and D. S. Barth, “The cortical innate immune response increases local neuronal excitability leading to seizures,” Brain, vol. 132, no. 9, pp. 2478–2486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. H. J. M. Majoie, M. de Baets, W. Renier, B. Lang, and A. Vincent, “Antibodies to voltage-gated potassium and calcium channels in epilepsy,” Epilepsy Research, vol. 71, no. 2-3, pp. 135–141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. K. McKnight, Y. Jiang, Y. Hart et al., “Serum antibodies in epilepsy and seizure-associated disorders,” Neurology, vol. 65, no. 11, pp. 1730–1736, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. C. G. Bien and A. Vincent, “Immune-mediated pediatric epilepsies,” Handbook of Clinical Neurology, vol. 111, pp. 521–531, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Falip, M. Carreño, J. Miró et al., “Prevalence and immunological spectrum of temporal lobe epilepsy with glutamic acid decarboxylase antibodies,” European Journal of Neurology, vol. 19, no. 6, pp. 827–833, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Boronat, L. Sabater, A. Saiz, J. Dalmau, and F. Graus, “GABAB receptor antibodies in limbic encephalitis and anti-GAD-associated neurologic disorders,” Neurology, vol. 76, no. 9, pp. 795–800, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. V. Nociti, G. Frisullo, T. Tartaglione et al., “Refractory generalized seizures and cerebellar ataxia associated with anti-GAD antibodies responsive to immunosuppressive treatment,” European Journal of Neurology, vol. 17, no. 1, p. e5, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. C. I. Akman, M. C. Patterson, A. Rubinstein, and R. Herzog, “Limbic encephalitis associated with anti-GAD antibody and common variable immune deficiency,” Developmental Medicine and Child Neurology, vol. 51, no. 7, pp. 563–567, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Krastinova, M. Vigneron, P. Le Bras, J. Gasnault, and C. Goujard, “Treatment of limbic encephalitis with anti-glioma-inactivated 1 (LGI1) antibodies,” Journal of Clinical Neuroscience, vol. 19, no. 11, pp. 1580–1582, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. A. M. L. Quek, J. W. Britton, A. McKeon et al., “Autoimmune epilepsy: clinical characteristics and response to immunotherapy,” Archives of Neurology, vol. 69, no. 5, pp. 582–593, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Nørgaard, V. Ehrenstein, R. B. Nielsen, L. S. Bakketeig, and H. T. Sørensen, “Maternal use of antibiotics, hospitalisation for infection during pregnancy, and risk of childhood epilepsy: a population-based cohort study,” PLoS ONE, vol. 7, no. 1, Article ID e30850, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. J. F. Bale Jr., “Fetal infections and brain development,” Clinics in Perinatology, vol. 36, no. 3, pp. 639–653, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. C. S. Wu, L. H. Pedersen, J. E. Miller et al., “Risk of cerebral palsy and childhood epilepsy related to infections before or during pregnancy,” PLoS ONE, vol. 8, no. 2, Article ID e57552, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Sun, M. Vestergaard, J. Christensen, A. J. Nahmias, and J. Olsen, “Prenatal exposure to maternal infections and epilepsy in childhood: a population-based cohort study,” Pediatrics, vol. 121, no. 5, pp. e1100–e1107, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. K. E. Nilsen, M. C. Walker, and H. R. Cock, “Characterization of the tetanus toxin model of refractory focal neocortical epilepsy in the rat,” Epilepsia, vol. 46, no. 2, pp. 179–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Mainardi, M. Pietrasanta, E. Vannini, O. Rossetto, and M. Caleo, “Tetanus neurotoxin-induced epilepsy in mouse visual cortex,” Epilepsia, vol. 53, no. 7, pp. e132–e136, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. R. C. Wykes, J. H. Heeroma, L. Mantoan et al., “Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy,” Science Translational Medicine, vol. 4, no. 161, Article ID 161ra152, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. W. M. Otte, P. Bielefeld, R. M. Dijkhuizen, and K. P. J. Braun, “Focal neocortical epilepsy affects hippocampal volume, shape, and structural integrity: a longitudinal MRI and immunohistochemistry study in a rat model,” Epilepsia, vol. 53, no. 7, pp. 1264–1273, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Sedigh-Sarvestani, G. I. Thuku, S. Sunderam et al., “Rapid eye movement sleep and hippocampal theta oscillations precede seizure onset in the tetanus toxin model of temporal lobe epilepsy,” The Journal of Neuroscience, vol. 34, no. 4, pp. 1105–1114, 2014. View at Google Scholar
  51. D. Kanduc, A. Stufano, G. Lucchese, and A. Kusalik, “Massive peptide sharing between viral and human proteomes,” Peptides, vol. 29, no. 10, pp. 1755–1766, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. G. Lucchese, A. Stufano, M. Calabro, and D. Kanduc, “Charting the peptide crossreactome between HIV-1 and the human proteome,” Frontiers in Bioscience, vol. 3, no. 4, pp. 1385–1400, 2011. View at Google Scholar · View at Scopus
  53. B. Trost, G. Lucchese, A. Stufano, M. Bickis, A. Kusalik, and D. Kanduc, “No human protein is exempt from bacterial motifs, not even one,” Self/Nonself, vol. 1, no. 4, pp. 328–334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. G. Lucchese, A. Stufano, and D. Kanduc, “Proposing low-similarity peptide vaccines against mycobacterium tuberculosis,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 832341, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. S. L. Bavaro, M. Calabrò, and D. Kanduc, “Pentapeptide sharing between Corynebacterium diphtheria toxin and the human neural protein network,” Immunopharmacology and Immunotoxicology, vol. 33, no. 2, pp. 360–372, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Kanduc, “Describing the hexapeptide identity platform between the influenza A H5N1 and Homo sapiens proteomes,” Biologics, vol. 4, pp. 245–261, 2010. View at Google Scholar
  57. R. Ricco and D. Kanduc, “Hepatitis B virus and homo sapiens proteomewide analysis: a profusion of viral peptide overlaps in neuron-specific human proteins,” Biologics: Targets and Therapy, vol. 4, pp. 75–81, 2010. View at Google Scholar · View at Scopus
  58. G. Lucchese, G. Capone, and D. Kanduc, “Peptide sharing between Influenza A H1N1 hemagglutinin and human axon guidance proteins,” Schizophrenia Bulletin, vol. 40, no. 2, pp. 362–375, 2014. View at Google Scholar
  59. A. Hoshino, M. Saitoh, A. Oka et al., “Epidemiology of acute encephalopathy in Japan, with emphasis on the association of viruses and syndromes,” Brain & Development, vol. 34, no. 5, pp. 337–343, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Kanduc, “Homology, similarity, and identity in peptide epitope immunodefinition,” Journal of Peptide Science, vol. 18, no. 8, pp. 487–494, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. D. Kanduc, “Pentapeptides as minimal functional units in cell biology and immunology,” Current Protein & Peptide Science, vol. 14, no. 2, pp. 111–120, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. D. B. Sant’Angelo, E. Robinson, C. A. Janeway Jr., and L. K. Denzin, “Recognition of core and flanking amino acids of MHC classII-bound peptides by the T cell receptor,” European Journal of Immunology, vol. 32, no. 9, pp. 2510–2520, 2002. View at Google Scholar
  63. J. B. Rothbard and M. L. Gefter, “Interactions between immunogenic peptides and MHC proteins,” Annual Review of Immunology, vol. 9, pp. 527–565, 1991. View at Google Scholar · View at Scopus
  64. J. B. Rothbard, R. M. Pemberton, H. C. Bodmer, B. A. Askonas, and W. R. Taylor, “Identification of residues necessary for clonally specific recognition of a cytotoxic T cell determinant,” The EMBO Journal, vol. 8, no. 8, pp. 2321–2328, 1989. View at Google Scholar · View at Scopus
  65. M. J. Reddehase, J. B. Rothbard, and U. H. Koszinowski, “A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes,” Nature, vol. 337, no. 6208, pp. 651–653, 1989. View at Google Scholar · View at Scopus
  66. B. Hemmer, T. Kondo, B. Gran et al., “Minimal peptide length requirements for CD4+ T cell clones—implications for molecular mimicry and T cell survival,” International Immunology, vol. 12, no. 3, pp. 375–383, 2000. View at Google Scholar · View at Scopus
  67. K. Landsteiner and J. van der Scheer, “On the serological specificity of peptides. III,” The Journal of Experimental Medicine, vol. 69, no. 5, pp. 705–719, 1939. View at Google Scholar
  68. R. Tiwari, J. Geliebter, A. Lucchese, A. Mittelman, and D. Kanduc, “Computational peptide dissection of Melan-a/MART-1 oncoprotein antigenicity,” Peptides, vol. 25, no. 11, pp. 1865–1871, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Tanabe, “Epitope peptides and immunotherapy,” Current Protein & Peptide Science, vol. 8, no. 1, pp. 109–118, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. W. Zeng, J. Pagnon, and D. C. Jackson, “The C-terminal pentapeptide of LHRH is a dominant B cell epitope with antigenic and biological function,” Molecular Immunology, vol. 44, no. 15, pp. 3724–3731, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. G. Lucchese, A. Stufano, B. Trost, A. Kusalik, and D. Kanduc, “Peptidology: short amino acid modules in cell biology and immunology,” Amino Acids, vol. 33, no. 4, pp. 703–707, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Cossette, L. Liu, K. Brisebois et al., “Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy,” Nature Genetics, vol. 31, no. 2, pp. 184–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. K. R. Veeramah, J. E. O'Brien, M. H. Meisler et al., “De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP,” American Journal of Human Genetics, vol. 90, no. 3, pp. 502–510, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Suzuki, A. V. Delgado-Escueta, K. Aguan et al., “Mutations in EFHC1 cause juvenile myoclonic epilepsy,” Nature Genetics, vol. 36, no. 8, pp. 842–849, 2004. View at Publisher · View at Google Scholar · View at Scopus
  75. A. A. Mohit, J. H. Martin, and C. A. Miller, “p493F12 kinase: a novel MAP kinase expressed in a subset of neurons in the human nervous system,” Neuron, vol. 14, no. 1, pp. 67–78, 1995. View at Google Scholar · View at Scopus
  76. C. E. Stafstrom, “The role of the subiculum in epilepsy and epileptogenesis,” Epilepsy Currents, vol. 5, no. 4, pp. 121–129, 2005. View at Google Scholar
  77. K. Sendrowski and W. Sobaniec, “Hippocampus, hippocampal sclerosis and epilepsy,” Pharmacological Reports, vol. 65, no. 3, pp. 555–565, 2013. View at Google Scholar
  78. C. Toma, A. Hervás, B. Torrico et al., “Analysis of two language-related genes in Autism: a case-control association study of FOXP2 and CNTNAP2,” Psychiatric Genetics, vol. 23, no. 2, pp. 82–85, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. T. D. Folsom and S. H. Fatemi, “The involvement of Reelin in neurodevelopmental disorders,” Neuropharmacology, vol. 68, pp. 122–135, 2013. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Romano, C. Michetti, A. Caruso, G. Laviola, and M. L. Scattoni, “Characterization of neonatal vocal and motor repertoire of reelin mutant mice,” PLoS ONE, vol. 8, no. 5, Article ID e64407, 2013. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Jeste, M. Sahin, P. Bolton, G. Ploubidis, and A. Humphrey, “Characterization of autism in young children with tuberous sclerosis complex,” Journal of Child Neurology, vol. 23, no. 5, pp. 520–525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. D. C. Taylor, “Schizophrenias and epilepsies: why? When? How?” Epilepsy and Behavior, vol. 4, no. 5, pp. 474–482, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. P. Qin, H. Xu, T. M. Laursen, M. Vestergaard, and P. B. Mortensen, “Risk for schizophrenia and schizophrenia-like psychosis among patients with epilepsy: population based cohort study,” British Medical Journal, vol. 331, no. 7507, pp. 23–25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. Y.-T. Chang, P.-C. Chen, I.-J. Tsai et al., “Bidirectional relation between schizophrenia and epilepsy: a population-based retrospective cohort study,” Epilepsia, vol. 52, no. 11, pp. 2036–2042, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. M. C. Clarke, A. Tanskanen, M. O. Huttunen, M. Clancy, D. R. Cotter, and M. Cannon, “Evidence for shared susceptibility to epilepsy and psychosis: a population-based family study,” Biological Psychiatry, vol. 71, no. 9, pp. 836–839, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. N. G. Cascella, D. J. Schretlen, and A. Sawa, “Schizophrenia and epilepsy: is there a shared susceptibility?” Neuroscience Research, vol. 63, no. 4, pp. 227–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Sette, A. Vitiello, B. Reherman et al., “The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes,” Journal of Immunology, vol. 153, no. 12, pp. 5586–5592, 1994. View at Google Scholar · View at Scopus
  88. K. D. Moudgil and E. E. Sercarz, “Understanding crypticity is the key to revealing the pathogenesis of autoimmunity,” Trends in Immunology, vol. 26, no. 7, pp. 355–359, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Eggleton, R. Haigh, and P. G. Winyard, “Consequence of neo-antigenicity of the ‘altered self’,” Rheumatology, vol. 47, no. 5, pp. 567–571, 2008. View at Publisher · View at Google Scholar · View at Scopus
  90. D. Kanduc, “Peptide cross-reactivity: the original sin of vaccines,” Frontiers in Bioscience, vol. 4, pp. 1393–1401, 2012. View at Google Scholar · View at Scopus