Table of Contents
Journal of Fluids
Volume 2013, Article ID 297493, 14 pages
Research Article

Free Convection Heat and Mass Transfer MHD Flow in a Vertical Porous Channel in the Presence of Chemical Reaction

1Department of Mathematics, Trident Academy of Technology, Infocity, Bhubaneswar, Odisha 751024, India
2Department of Mathematics, S.O.A. University, Bhubaneswar, Odisha 751030, India
3Department of Mathematics, Christ College, Cuttack, Odisha, India

Received 20 May 2013; Revised 18 September 2013; Accepted 23 September 2013

Academic Editor: Hideki Tsuge

Copyright © 2013 R. N. Barik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The objective of the present study is to examine the fully developed free convective MHD flow of an electrically conducting viscous incompressible fluid in a vertical porous channel under influence of asymmetric wall temperature and concentration in the presence of chemical reaction. The heat and mass transfer coupled with diffusion-thermo effect renders the present analysis interesting and curious. The analytical solution by Laplace transform technique of partial differential equations is used to obtain the expressions for the velocity, temperature, and concentration. It is observed that under the influence of dominating mass diffusivity over thermal diffusivity with stronger Lorentz force the velocity is reduced at all points Further, low rate of thermal diffusion delays the attainment of free stream state. Flow of aqueous solution in the presence of heavier species is prone to back flow.