Table of Contents
Journal of Fluids
Volume 2013, Article ID 297493, 14 pages
http://dx.doi.org/10.1155/2013/297493
Research Article

Free Convection Heat and Mass Transfer MHD Flow in a Vertical Porous Channel in the Presence of Chemical Reaction

1Department of Mathematics, Trident Academy of Technology, Infocity, Bhubaneswar, Odisha 751024, India
2Department of Mathematics, S.O.A. University, Bhubaneswar, Odisha 751030, India
3Department of Mathematics, Christ College, Cuttack, Odisha, India

Received 20 May 2013; Revised 18 September 2013; Accepted 23 September 2013

Academic Editor: Hideki Tsuge

Copyright © 2013 R. N. Barik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. K. Jha and A. O. Ajibade, “Free convection heat and mass transfer flow in a vertical channel with the Dufour effect,” Journal of Process Mechanical Engineering, vol. 224, no. 2, pp. 91–101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. V. M. Soundalgekar and S. P. Akolkar, “Effects of free convection currents and mass transfer on flow past a vertical oscillating plate,” Astrophysics and Space Science, vol. 89, no. 2, pp. 241–254, 1983. View at Publisher · View at Google Scholar · View at Scopus
  3. N. G. Kafoussias and E. W. Williams, “Thermal-diffusion and diffusion-thermo effects on mixed free-forced convective and mass transfer boundary layer flow with temperature dependent viscosity,” International Journal of Engineering Science, vol. 33, no. 9, pp. 1369–1384, 1995. View at Google Scholar · View at Scopus
  4. B. K. Jha and A. K. Singh, “Soret effects on free-convection and mass transfer flow in the stokes problem for a infinite vertical plate,” Astrophysics and Space Science, vol. 173, no. 2, pp. 251–255, 1990. View at Publisher · View at Google Scholar · View at Scopus
  5. N. G. Kafoussias, “MHD thermal-diffusion effects on free-convective and mass-transfer flow over an infinite vertical moving plate,” Astrophysics and Space Science, vol. 192, no. 1, pp. 11–19, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. M. S. Alam, M. M. Rahman, and M. A. Samad, “Dufour and Soret effects on unsteady MHD free convection and mass transfer flow past a vertical porous plate in a porous medium,” Nonlinear Analysis. Modelling and Control, vol. 11, no. 3, pp. 217–226, 2006. View at Google Scholar
  7. M. S. Alam, M. M. Rahman, M. Ferdous, K. Maino, E. Mureithi, and A. Postelnicu, “Diffusion-thermo and thermal-diffusion effects on free convective heat and mass transfer flow in a porous medium with time dependent temperature and concentration,” International Journal of Applied Engineering Research, vol. 2, no. 1, pp. 81–96, 2007. View at Google Scholar
  8. O. A. Beg, T. A. Beg, A. Y. Bakier, and V. R. Prasad, “Chemically-reacting mixed convective heat and mass transfer along inclined and vertical plates with soret and Dufour effects: numerical solution,” International Journal of Applied Mathematics and Mechanics, vol. 5, no. 2, pp. 39–57, 2009. View at Google Scholar
  9. Z. Dursunkaya and W. M. Worek, “Diffusion-thermo and thermal-diffusion effects in transient and steady natural convection from a vertical surface,” International Journal of Heat and Mass Transfer, vol. 35, no. 8, pp. 2060–2065, 1992. View at Google Scholar · View at Scopus
  10. C. R. A. Abreu, M. F. Alfradique, and A. S. Telles, “Boundary layer flows with Dufour and Soret effects: I: forced and natural convection,” Chemical Engineering Science, vol. 61, no. 13, pp. 4282–4289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Osalusi, J. Side, and R. Harris, “Thermal-diffusion and diffusion-thermo effects on combined heat and mass transfer of a steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating,” International Communications in Heat and Mass Transfer, vol. 35, no. 8, pp. 908–915, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Anghel, H. S. Takhar, and I. Pop, “Dufour and Soret effects on free convection boundary layer over a vertical surface embedded in a porous medium,” Studia Universitatis Babes-Bolyai. Matematica, vol. 11, no. 4, pp. 11–21, 2000. View at Google Scholar
  13. A. Postelnicu, “Influence of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous media considering Soret and Dufour effects,” International Journal of Heat and Mass Transfer, vol. 47, no. 6-7, pp. 1467–1472, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Gebhart and L. Pera, “The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion,” International Journal of Heat and Mass Transfer, vol. 14, no. 12, pp. 2025–2050, 1971. View at Google Scholar · View at Scopus
  15. U. N. Das, R. Deka, and V. M. Soundalgekar, “Effects of mass transfer on flow past an impulsively started infinite vertical plate with constant heat flux and chemical reaction,” Forschung im Ingenieurwesen, vol. 60, no. 10, pp. 284–287, 1994. View at Google Scholar · View at Scopus
  16. S. S. Saxena and G. K. Dubey, “Unsteady MHD heat and mass transfer free convection flow of a polar fluid past a vertical moving porous plate in a porous medium with heat generation and thermal diffusion,” Advances in Applied Science Research, vol. 2, no. 4, pp. 259–278, 2011. View at Google Scholar
  17. K. Raveendra Babu, A. G. Vijaya Kumar, and S. V. K. Varma, “Diffusion-thermo and radiation effects on MHD free convective heat and mass transfer flow past an infinite vertical plate in the presence of a chemical reaction of first order,” Advances in Applied Science Research, vol. 3, no. 4, pp. 2446–2462, 2012. View at Google Scholar
  18. K. Sudhakar, R. Srinibasa Raju, and M. Rangamma, “Chemical reaction effect on an unsteady MHD free convection flow past an infinite vertical accelerated plate with constant heat flux, thermal diffusion and diffusion thermo,” International Journal of Modern Engineering Research, vol. 2, no. 5, pp. 3329–3339, 2012. View at Google Scholar
  19. L. Debanath and D. Bhatta, Integral Transforms and Their Applications, Applications of Laplace Transforms, Chapman and Hall/CRC, Taylor and Francies Group, London, UK, 2007.
  20. K. R. Cramer and S. I. Pai, Magnetofluid Dynamics for Engineers and Applied Physics, McGraw-Hill, New York, NY, USA, 1973.
  21. I. Pop, “Effect of Hall current on hydromagnetic flow near an accelerated plate,” International Journal of Physics and Mathematical Sciences, vol. 5, p. 375, 1971. View at Google Scholar
  22. M. A. Hossain and K. Mohammad, “Effect of hall current on hydromagnetic free convection flow near an accelerated porous plate,” Japanese Journal of Applied Physics, vol. 27, no. 8, pp. 1531–1535, 1988. View at Google Scholar · View at Scopus
  23. P. K. Rath, G. C. Dash, and A. K. Patra, “Effect of Hall current and chemical reaction on MHD flow along an exponentially accelerated porous flat plate with internal heat absorption/generation,” Proceedings of the National Academy of Sciences India A, vol. 80, no. 4, pp. 295–308, 2010. View at Google Scholar · View at Scopus