Table of Contents
Journal of Fluids
Volume 2013, Article ID 935156, 10 pages
http://dx.doi.org/10.1155/2013/935156
Research Article

A Double Diffusive Unsteady MHD Convective Flow Past a Flat Porous Plate Moving through a Binary Mixture with Suction or Injection

1Aditya Engineering College, Surampalem, Andhra Pradesh 533437, India
2GITAM University, Visakhapatnam, Andhra Pradesh 530045, India

Received 31 May 2013; Accepted 3 September 2013

Academic Editor: Andrew W. Cook

Copyright © 2013 D. R. V. S. R. K. Sastry and A. S. N. Murti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Dai and M. M. Khonsari, “Theory of hydrodynamic lubrication involving the mixture of two fluids,” Journal of Applied Mechanics, vol. 61, no. 3, pp. 634–641, 1994. View at Google Scholar · View at Scopus
  2. O. D. Makinde, “Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate,” International Communications in Heat and Mass Transfer, vol. 32, no. 10, pp. 1411–1419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Truesdell, “Sulle basi della thermomeccanica,” Rendiconti Lincei, vol. 22, no. 8, pp. 33–38, 1957. View at Google Scholar
  4. N. Mills, “Incompressible mixtures of newtonian fluids,” International Journal of Engineering Science, vol. 4, no. 2, pp. 97–112, 1966. View at Google Scholar · View at Scopus
  5. C. E. Beevers and R. E. Craine, “On the determination of response functions for a binary mixture of incompressible newtonian fluids,” International Journal of Engineering Science, vol. 20, no. 6, pp. 737–745, 1982. View at Google Scholar · View at Scopus
  6. A. Al-Sharif, K. Chamniprasart, K. R. Rajagopal, and A. Z. Szeri, “Lubrication with binary mixtures: liquid-liquid emulsion,” Journal of Tribology, vol. 115, no. 1, pp. 46–55, 1993. View at Google Scholar · View at Scopus
  7. S. H. Wang, A. Al-Sharif, K. R. Rajagopal, and A. Z. Szeri, “Lubrication with binary mixtures: liquid-liquid emulsion in an EHL conjunction,” Journal of Tribology, vol. 115, no. 3, pp. 515–522, 1993. View at Google Scholar · View at Scopus
  8. R. Kandasamy, K. Periasamy, and K. K. S. Prabhu, “Effects of chemical reaction, heat and mass transfer along a wedge with heat source and concentration in the presence of suction or injection,” International Journal of Heat and Mass Transfer, vol. 48, no. 7, pp. 1388–1394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. El-Hakiem, “MHD oscillatory flow on free convection-radiation through a porous medium with constant suction velocity,” Journal of Magnetism and Magnetic Materials, vol. 220, no. 2, pp. 271–276, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Raptis, C. Perdikis, and A. Leontitsis, “Effects of radiation in an optically thin gray gas flowing past a vertical infinite plate in the presence of a magnetic field,” Heat and Mass Transfer, vol. 39, no. 8-9, pp. 771–773, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Israel-Cookey, A. Ogulu, and V. B. Omubo-Pepple, “Influence of viscous dissipation and radiation on unsteady MHD free-convection flow past an infinite heated vertical plate in a porous medium with time-dependent suction,” International Journal of Heat and Mass Transfer, vol. 46, no. 13, pp. 2305–2311, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Abd El-Naby, E. M. E. Elbarbary, and N. Y. AbdElazem, “Finite difference solution of radiation effects on MHD unsteady free-convection flow over vertical porous plate,” Applied Mathematics and Computation, vol. 151, no. 2, pp. 327–346, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. K. Singh and C. K. Dikshit, “Hydromagnetic flow past a continuously moving semi-infinite plate for large suction,” Astrophysics and Space Science, vol. 148, no. 2, pp. 249–256, 1988. View at Publisher · View at Google Scholar · View at Scopus
  14. H. S. Takhar, R. S. R. Gorla, and V. M. Soundalgekar, “Radiation effects on MHD free convection flow of a gas past a semi-infinite vertical plate,” International Journal of Numerical Methods for Heat and Fluid Flow, vol. 6, no. 2, pp. 77–83, 1996. View at Google Scholar · View at Scopus
  15. Y. J. Kim, “Unsteady MHD convection flow of polar fluids past a vertical moving porous plate in a porous medium,” International Journal of Heat and Mass Transfer, vol. 44, no. 15, pp. 2791–2799, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Vajravelu and A. Hadjinicolaou, “Heat transfer in a viscous fluid over a stretching sheet with viscous dissipation and internal heat generation,” International Communications in Heat and Mass Transfer, vol. 20, no. 3, pp. 417–430, 1993. View at Google Scholar · View at Scopus
  17. M. S. Alam, M. M. Rahman, and M. A. Sattar, “MHD free convective heat and mass transfer flow past an inclined surface with heat generation,” Thammasat International Journal of Science and Technology, vol. 11, pp. 1–8, 2006. View at Google Scholar
  18. A. J. Chamkha, “Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption,” International Journal of Engineering Science, vol. 42, no. 2, pp. 217–230, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. F. M. Hady, R. A. Mohamed, and A. Mahdy, “MHD free convection flow along a vertical wavy surface with heat generation or absorption effect,” International Communications in Heat and Mass Transfer, vol. 33, no. 10, pp. 1253–1263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. O. D. Makinde and P. O. Olanrewaju, “Unsteady mixed convection with Soret and Dufour effects past a porous plate moving through a binary mixture of chemically reacting fluid,” Chemical Engineering Communications, vol. 22, no. 7, pp. 65–78, 2011. View at Publisher · View at Google Scholar · View at Scopus