Table of Contents
Geometry
Volume 2014, Article ID 953702, 15 pages
http://dx.doi.org/10.1155/2014/953702
Review Article

Geometrical and P.D.E. Methods in the Treatment of the Theory of Shells: Comparing Euclidean and Affine Approaches

1Departamento de Matemáticas, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario, Argentina
2Departamento de Matemáticas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Avenida Velez Sarsfield 1611, 5000 Córdoba, Argentina
3Departamento de Física, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Avenida Velez Sarsfield 1611, 5000 Córdoba, Argentina

Received 30 June 2013; Accepted 27 November 2013; Published 23 February 2014

Academic Editor: Bennett Palmer

Copyright © 2014 Salvador Gigena et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. Blaschke, Vorlesungen Über Differentialgeometrie II, Springer, 1923.
  2. E. Calabi, “Improper Affine Hyperspheres of Convex Type and a Generalization of a Theorem by K. Jörgens,” Michigan Mathematical Journal, vol. 5, pp. 105–126, 1958. View at Google Scholar
  3. E. Calabi, “Complete affine hyperspheres I.,” in Symposia Mathematica, vol. 10, pp. 19–38, Istituto Nazionale di Alta Matematica, Academic Press, 1972.
  4. E. Calabi, “Hypersurfaces with maximal affinely invariant area,” American Journal of Mathematics, vol. 104, no. 1, pp. 91–126, 1982. View at Publisher · View at Google Scholar
  5. S. Y. Cheng and S. T. Yau, “Complete affine hypersurfaces. I: the completeness of affine metrics,” Communications in Pure and Applied Mathematics, vol. 39, no. 6, pp. 839–866, 1986. View at Google Scholar
  6. S. S. Chern, Affine Minimal Hypersurfaces, Proceedings Japan-U.S. Seminar on Minimal Submanifolds and Geodesics, Kaigai Publications, Tokyo, 1978.
  7. S. Gigena, Hypersurface Geometry And Related Invariants in A Real Vector Space, Research Monograph, Editorial Ingreso, Córdoba, Argentina, 1996.
  8. S. Gigena, “Classificatory problems in affine geometry approached by differential equations methods,” Revista De La Unión Matemática Argentina, vol. 47, no. 2, pp. 95–107, 2007. View at Google Scholar
  9. E. Gläsner, “Ein affinanalogon zu den Scherksen minimalflächen,” Archiv der Mathematik, vol. 27, pp. 436–439, 1977. View at Google Scholar
  10. A.-M. Li, “Calabi conjecture on hyperbolic affine hyperspheres,” Mathematische Zeitschrift, vol. 203, no. 1, pp. 483–491, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Nomizu and U. Pinkall, “Cubic form theorem for affine immersions,” Results in Mathematics, vol. 13, no. 3-4, pp. 338–362, 1988. View at Publisher · View at Google Scholar
  12. K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge University Press, 1994.
  13. A. V. Pogorelov, “On the improper convex affine hyperspheres,” Geometriae Dedicata, vol. 1, no. 1, pp. 33–46, 1972. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Radon, “Die grundgleichungen der affinen flächentheorie,” Leipziger Berichte, vol. 70, pp. 91–107, 1918. View at Google Scholar
  15. T. Sasaki, “Hyperbolic affine hyperspheres,” Nagoya Mathematical Journal, vol. 77, pp. 107–123, 1980. View at Google Scholar
  16. P. A. Schirokov and A. P. Schirokov, Affine Differentialgeometrie, Teubner, Leibzig, Germany, 1962.
  17. R. Schneider, “Zur affinen Differentialgeometrie im Großen. I,” Mathematische Zeitschrift, vol. 101, no. 5, pp. 375–406, 1967. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Schneider, “Zur affinen Differentialgeometrie im Großen II. Über eine Abschätzung der Pickschen Invariante auf Affinsphären,” Mathematische Zeitschrift, vol. 102, no. 1, pp. 1–8, 1967. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Tzitzeica, “Sur une nouvelle classe des surfaces,” Rendiconti del Circolo Matematico di Palermo, vol. 25, no. 1, pp. 180–187, 1908. View at Publisher · View at Google Scholar
  20. G. Tzitzeica, “Sur une nouvelle classe des surfaces,” Rendiconti del Circolo Matematico di Palermo, vol. 28, no. 1, pp. 210–216, 1909. View at Publisher · View at Google Scholar
  21. L. Vrancken, “Affine higher order parallel hypersurfaces,” Annales de la Faculté des Sciences de Toulouse, vol. 9, no. 3, pp. 341–353, 1988. View at Google Scholar
  22. F. John, “Estimates for the derivatives of the stresses in a thin shell and interior shell equations,” Communications on Pure and Applied Mathematics, vol. 18, no. 1-2, pp. 235–267, 1965. View at Publisher · View at Google Scholar
  23. F. John, “Refined interior equations for thin elastic shells,” Communications on Pure and Applied Mathematics, vol. 24, no. 5, pp. 583–615, 1971. View at Publisher · View at Google Scholar
  24. S. Gigena, M. Binia, and D. Abud, “Condiciones de compatibilidad para cáscaras afines,” Mecánica Computacional, vol. 21, pp. 1862–1881, 2002. View at Google Scholar
  25. S. Gigena, D. Abud, and M. Binia, “Theory of affine shells: higher order estimates,” Mecánica Computacional, vol. 29, pp. 969–988, 2010. View at Google Scholar
  26. R. A. Arciniega and J. N. Reddy, “Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures,” Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 4–6, pp. 1048–1073, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. A. E. Green and W. Zerna, Theoretical Elasticity, Oxford University Press, 1954.
  28. S. Klinkel, F. Gruttmann, and W. Wagner, “Continuum based three-dimensional shell element for laminated structures,” Computers and Structures, vol. 71, no. 1, pp. 43–62, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. W. T. Koiter, “A systematic simplification of the general equations in the linear theory of thin shells,” Nederlandse Akademie van Wetenschappen, vol. 42, pp. 263–277, 1964. View at Google Scholar
  30. W. T. Koiter, “A comparison between John's refined interior shell equations and classical shell theory,” Zeitschrift für Angewandte Mathematik und Physik ZAMP, vol. 20, no. 5, pp. 642–652, 1969. View at Publisher · View at Google Scholar · View at Scopus
  31. W. T. Koiter, “On the mathematical foundation of shell theory,” Proceedings International Congress of Mathematicians, vol. 3, pp. 123–130, 1970. View at Google Scholar
  32. W. T. Koiter and J. C. Simmonds, “Foundations of shell theory,” in Proceedings of the 13th International Congress of Theoretical and Applied Mechanics, pp. 150–176, 1973.
  33. V. Lods and C. Mardare, “A justification of linear Koiter and Naghdi's models for totally clamped shell,” Asymptotic Analysis, vol. 31, no. 3-4, pp. 189–210, 2002. View at Google Scholar · View at Scopus
  34. A. E. H. Love, A Treatise on the Mathematical theory of Elasticity, Dover, 4th edition, 1944.
  35. R. H. Macneal and R. L. Harder, “A proposed standard set of problems to test finite element accuracy,” Finite Elements in Analysis and Design, vol. 1, no. 1, pp. 3–20, 1985. View at Google Scholar · View at Scopus
  36. H. Möllmann, Introduction To the Theory of Thin Shells, John Wiley & Sons, 1981.
  37. J. N. Reddy, An Introduction To Continuum Mechanics, Cambridge University Press, 2008.
  38. E. Reissner, “On the derivation of the theory of thin elastic shells,” Journal of Mathematical Physics, vol. 42, pp. 263–277, 1964. View at Google Scholar
  39. W. Wagner and F. Gruttmann, “A simple finite rotation formulation for composite shell elements,” Engineering Computations, vol. 11, no. 2, pp. 145–176, 1994. View at Google Scholar
  40. C. C. Hsiung, A First Course in Differential Geometry, John Wiley & Sons, 1981.
  41. W. Klingenberg, A Course in Differential Geometry, Springer, 1978.
  42. R. Millman and G. Parker, Elements of Differential Geometry, Prentice-Hall, New Jersey, NJ, USA, 1977.