Table of Contents Author Guidelines Submit a Manuscript
Genetics Research International
Volume 2012 (2012), Article ID 170173, 5 pages
http://dx.doi.org/10.1155/2012/170173
Review Article

Control of Transcriptional Elongation by RNA Polymerase II: A Retrospective

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA

Received 12 September 2011; Accepted 11 October 2011

Academic Editor: Sebastián Chávez

Copyright © 2012 Kris Brannan and David L. Bentley. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Hay, H. Skolnik-David, and Y. Aloni, “Attenuation in the control of SV40 gene expression,” Cell, vol. 29, no. 1, pp. 183–193, 1982. View at Google Scholar · View at Scopus
  2. H. Skolnik-David and Y. Aloni, “Pausing of RNA polymerase molecules during in vivo transcription of the SV40 leader region,” EMBO Journal, vol. 2, no. 2, pp. 179–184, 1983. View at Google Scholar · View at Scopus
  3. W. C. Skarnes, D. C. Tessier, and N. H. Acheson, “RNA polymerases stall and/or prematurely terminate nearby both early and late promoters on polyomavirus DNA,” Journal of Molecular Biology, vol. 203, no. 1, pp. 153–171, 1988. View at Google Scholar · View at Scopus
  4. C. Yanofsky, “Transcription attenuation: once viewed as a novel regulatory strategy,” Journal of Bacteriology, vol. 182, no. 1, pp. 1–8, 2000. View at Google Scholar · View at Scopus
  5. J. A. Coppola, A. S. Field, and D. S. Luse, “Promoter-proximal pausing by RNA polymerase II in vitro: transcripts shorter than 20 nucleotides are not capped,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 5, pp. 1251–1255, 1983. View at Google Scholar · View at Scopus
  6. D. S. Gilmour and J. T. Lis, “RNA polymerase II interacts with the promoter region of the noninduced hsp70 gene in Drosophila melanogaster cells,” Molecular and Cellular Biology, vol. 6, no. 11, pp. 3984–3989, 1986. View at Google Scholar · View at Scopus
  7. A. E. Rougvie and J. T. Lis, “The RNA polymerase II molecule at the 5′ end of the uninduced hsp70 gene of D. melanogaster is transcriptionally engaged,” Cell, vol. 54, no. 6, pp. 795–804, 1988. View at Google Scholar · View at Scopus
  8. D. L. Bentley and M. Groudine, “A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells,” Nature, vol. 321, no. 6071, pp. 702–706, 1986. View at Google Scholar · View at Scopus
  9. D. Eick and G. W. Bornkamm, “Transcriptional arrest within the first exon is a fast control mechanism in c-myc gene expression,” Nucleic Acids Research, vol. 14, no. 21, pp. 8331–8346, 1986. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Giardina, R. M. Perez, and J. T. Lis, “Promoter melting and TFIID complexes on Drosophila genes in vivo,” Genes and Development, vol. 6, no. 11, pp. 2190–2200, 1992. View at Google Scholar · View at Scopus
  11. A. E. Rougvie and J. T. Lis, “Postinitiation transcriptional control in Drosophila melanogaster,” Molecular and Cellular Biology, vol. 10, no. 11, pp. 6041–6045, 1990. View at Google Scholar · View at Scopus
  12. Z. Chen, M. L. Harless, D. A. Wright, and R. E. Kellems, “Identification and characterization of transcriptional arrest sites in exon 1 of the human adenosine deaminase gene,” Molecular and Cellular Biology, vol. 10, no. 9, pp. 4555–4564, 1990. View at Google Scholar · View at Scopus
  13. M. A. Collart, N. Tourkine, D. Belin, P. Vassalli, P. Jeanteur, and J. M. Blanchard, “c-fos Gene transcription in murine macrophages is modulated by a calcium- dependent block to elongation in intron 1,” Molecular and Cellular Biology, vol. 11, no. 5, pp. 2826–2831, 1991. View at Google Scholar · View at Scopus
  14. J. Mirkovitch and J. E. Darnell, “Mapping of RNA polymerase on mammalian genes in cells and nuclei,” Molecular Biology of the Cell, vol. 3, no. 10, pp. 1085–1094, 1992. View at Google Scholar · View at Scopus
  15. L. J. Schilling and P. J. Farnham, “Inappropriate transcription from the 5' end of the murine dihydrofolate reductase gene masks transcriptional regulation,” Nucleic Acids Research, vol. 22, no. 15, pp. 3061–3068, 1994. View at Google Scholar · View at Scopus
  16. G. F. Crouse, E. J. Leys, and R. N. McEwan, “Analysis of the mouse dhfr promoter region: existence of a divergently transcribed gene,” Molecular and Cellular Biology, vol. 5, no. 8, pp. 1847–1858, 1985. View at Google Scholar · View at Scopus
  17. A. Krumm, L. B. Hickey, and M. Groudine, “Promoter-proximal pausing of RNA polymerase II defines a general rate- limiting step after transcription initiation,” Genes and Development, vol. 9, no. 5, pp. 559–572, 1995. View at Google Scholar · View at Scopus
  18. M. G. Guenther, S. S. Levine, L. A. Boyer, R. Jaenisch, and R. A. Young, “A chromatin landmark and transcription initiation at most promoters in human cells,” Cell, vol. 130, no. 1, pp. 77–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. W. Muse, D. A. Gilchrist, S. Nechaev et al., “RNA polymerase is poised for activation across the genome,” Nature Genetics, vol. 39, no. 12, pp. 1507–1511, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. L. J. Core, J. J. Waterfall, and J. T. Lis, “Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters,” Science, vol. 322, no. 5909, pp. 1845–1848, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. A. Brown, A. N. Imbalzano, and R. E. Kingston, “Activator-dependent regulation of transcriptional pausing on nucleosomal templates,” Genes and Development, vol. 10, no. 12, pp. 1479–1490, 1996. View at Google Scholar · View at Scopus
  22. D. A. Gilchrist, G. Dos Santos, D. C. Fargo et al., “Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation,” Cell, vol. 143, no. 4, pp. 540–551, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. H. S. Lee, K. W. Kraus, M. F. Wolfner, and J. T. Lis, “DNA sequence requirements for generating paused polymerase at the start of hsp70,” Genes and Development, vol. 6, no. 2, pp. 284–295, 1992. View at Google Scholar · View at Scopus
  24. S. Y. Kao, A. F. Calman, P. A. Luciw, and B. M. Peterlin, “Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product,” Nature, vol. 330, no. 6147, pp. 489–493, 1987. View at Google Scholar · View at Scopus
  25. H. Skolnik-David, N. Hay, and Y. Aloni, “Site of premature termination of late transcription of simian virus 40 DNA: enhancement by 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 9, pp. 2743–2747, 1982. View at Google Scholar · View at Scopus
  26. D. L. Bentley and M. Groudine, “Sequence requirements for premature termination of transcription in the human c-myc gene,” Cell, vol. 53, no. 2, pp. 245–256, 1988. View at Google Scholar · View at Scopus
  27. A. C. Seila, J. M. Calabrese, S. S. Levine et al., “Divergent transcription from active promoters,” Science, vol. 322, no. 5909, pp. 1849–1851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Pei, B. Schwer, and S. Shuman, “Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control,” The Journal of Biological Chemistry, vol. 278, no. 9, pp. 7180–7188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. E. B. Rasmussen and J. T. Lis, “In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 17, pp. 7923–7927, 1993. View at Google Scholar · View at Scopus
  30. J. Greenblatt, J. R. Nodwell, and S. W. Mason, “Transcriptional antitermination,” Nature, vol. 364, no. 6436, pp. 401–406, 1993. View at Publisher · View at Google Scholar · View at Scopus
  31. C. D. Southgate and M. R. Green, “The HIV-1 Tat protein activates transcription from an upstream DNA-binding site: implications for Tat function,” Genes and Development, vol. 5, no. 12, pp. 2496–2507, 1991. View at Google Scholar · View at Scopus
  32. K. Yankulov, J. Blau, T. Purton, S. Roberts, and D. L. Bentley, “Transcriptional elongation by RNA polymerase II is stimulated by transactivators,” Cell, vol. 77, no. 5, pp. 749–759, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Barboric, R. M. Nissen, S. Kanazawa, N. Jabrane-Ferrat, and B. M. Peterlin, “NF-κB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II,” Molecular Cell, vol. 8, no. 2, pp. 327–337, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. P. B. Rahl, C. Y. Lin, A. C. Seila et al., “C-Myc regulates transcriptional pause release,” Cell, vol. 141, no. 3, pp. 432–445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. W. S. Blair, R. A. Fridell, and B. R. Cullen, “Synergistic enhancement of both initiation and elongation by acidic transcription activation domains,” EMBO Journal, vol. 15, no. 7, pp. 1658–1665, 1996. View at Google Scholar · View at Scopus
  36. J. Blau, H. Xiao, S. McCracken, P. O'Hare, J. Greenblatt, and D. Bentley, “Three functional classes of transcriptional activation domains,” Molecular and Cellular Biology, vol. 16, no. 5, pp. 2044–2055, 1996. View at Google Scholar · View at Scopus
  37. N. W. Fraser, P. B. Sehgal, and J. E. Darnell, “DRB-induced premature termination of late adenovirus transcription,” Nature, vol. 272, no. 5654, pp. 590–593, 1978. View at Google Scholar · View at Scopus
  38. T. Wada, T. Takagi, Y. Yamaguchi et al., “DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs,” Genes and Development, vol. 12, no. 3, pp. 343–356, 1998. View at Google Scholar · View at Scopus
  39. Y. Yamaguchi, T. Takagi, T. Wada et al., “NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation,” Cell, vol. 97, no. 1, pp. 41–51, 1999. View at Google Scholar · View at Scopus
  40. N. F. Marshall and D. H. Price, “Control of formation of two distinct classes of RNA polymerase II elongation complexes,” Molecular and Cellular Biology, vol. 12, no. 5, pp. 2078–2090, 1992. View at Google Scholar · View at Scopus
  41. P. Wei, M. E. Garber, S. M. Fang, W. H. Fischer, and K. A. Jones, “A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA,” Cell, vol. 92, no. 4, pp. 451–462, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Zhu, T. Peery, J. Peng et al., “Transcription elongation factor P-TEFb is required for HIV-1 Tat transactivation in vitro,” Genes and Development, vol. 11, no. 20, pp. 2622–2632, 1997. View at Google Scholar · View at Scopus
  43. T. Wada, T. Takagi, Y. Yamaguchi, D. Watanabe, and H. Handa, “Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro,” EMBO Journal, vol. 17, no. 24, pp. 7395–7403, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. N. F. Marshall, J. Peng, Z. Xie, and D. H. Price, “Control of RNA polymerase II elongation potential by a novel carboxyl- terminal domain kinase,” The Journal of Biological Chemistry, vol. 271, no. 43, pp. 27176–27183, 1996. View at Publisher · View at Google Scholar · View at Scopus
  45. T. Yamada, Y. Yamaguchi, N. Inukai, S. Okamoto, T. Mura, and H. Handa, “P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation,” Molecular Cell, vol. 21, no. 2, pp. 227–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. H. S. Y. Mancebo, G. Lee, J. Flygare et al., “P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro,” Genes and Development, vol. 11, no. 20, pp. 2633–2644, 1997. View at Google Scholar · View at Scopus
  47. L. Amir-Zilberstein, E. Ainbinder, L. Toube, Y. Yamaguchi, H. Handa, and R. Dikstein, “Differential regulation of NF-κB by elongation factors is determined by core promoter type,” Molecular and Cellular Biology, vol. 27, no. 14, pp. 5246–5259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. B. M. Peterlin and D. H. Price, “Controlling the Elongation Phase of Transcription with P-TEFb,” Molecular Cell, vol. 23, no. 3, pp. 297–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Smith, C. Lin, and A. Shilatifard, “The super elongation complex (SEC) and MLL in development and disease,” Genes and Development, vol. 25, no. 7, pp. 661–672, 2011. View at Publisher · View at Google Scholar
  50. Z. Yang, J. H. N. Yik, R. Chen et al., “Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4,” Molecular Cell, vol. 19, no. 4, pp. 535–545, 2005. View at Publisher · View at Google Scholar · View at Scopus