Table of Contents Author Guidelines Submit a Manuscript
Genetics Research International
Volume 2012, Article ID 543286, 9 pages
http://dx.doi.org/10.1155/2012/543286
Research Article

Sequence Analysis of Inducible Prophage phIS3501 Integrated into the Haemolysin II Gene of Bacillus thuringiensis var israelensis ATCC35646

1UMR1319 Micalis, CRJ Institut National de la Recherche Agronomique, Bat. 440, Domaine de Vilvert, F-78352 Jouy-en-Josas, France
2Sécurité et Qualité des Produits d’Origine Végétale, UMR408, INRA Université d’Avignon, 84914 Avignon Cedex 9, France

Received 26 August 2011; Accepted 30 November 2011

Academic Editor: Tomaso Patarnello

Copyright © 2012 Bouziane Moumen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Lapidus, E. Goltsman, S. Auger et al., “Extending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity,” Chemico-Biological Interactions, vol. 171, no. 2, pp. 236–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Ehling-Schulz, M. Fricker, and S. Scherer, “Bacillus cereus, the causative agent of an emetic type of food-borne illness,” Molecular Nutrition and Food Research, vol. 48, no. 7, pp. 479–487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Kotiranta, K. Lounatmaa, and M. Haapasalo, “Epidemiology and pathogenesis of Bacillus cereus infections,” Microbes and Infection, vol. 2, no. 2, pp. 189–198, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Mock and A. Fouet, “Anthrax,” Annual Review of Microbiology, vol. 55, pp. 647–671, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. D. A. Rasko, M. R. Altherr, C. S. Han, and J. Ravel, “Genomics of the Bacillus cereus group of organisms,” FEMS Microbiology Reviews, vol. 29, no. 2, pp. 303–329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Schnepf, N. Crickmore, J. van Rie et al., “Bacillus thuringiensis and its pesticidal crystal proteins,” Microbiology and Molecular Biology Reviews, vol. 62, no. 3, pp. 775–806, 1998. View at Google Scholar · View at Scopus
  7. R. Schuch and V. A. Fischetti, “The secret life of the anthrax agent Bacillus anthracis: bacteriophage-mediated ecological adaptations,” PLoS ONE, vol. 4, no. 8, Article ID e6532, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. S. Han, G. Xie, J. F. Challacombe et al., “Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis,” Journal of Bacteriology, vol. 188, no. 9, pp. 3382–3390, 2006. View at Publisher · View at Google Scholar
  9. D. A. Rasko, J. Ravel, O. A. Økstad et al., “The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1,” Nucleic Acids Research, vol. 32, no. 3, pp. 977–988, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. N. J. Tourasse, E. Helgason, O. A. Økstad, I. K. Hegna, and A. B. Kolstø, “The Bacillus cereus group: novel aspects of population structure and genome dynamics,” Journal of Applied Microbiology, vol. 101, no. 3, pp. 579–593, 2006. View at Publisher · View at Google Scholar
  11. A. R. Hoffmaster, J. Ravel, D. A. Rasko et al., “Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 22, pp. 8449–8454, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. F. Challacombe, M. R. Altherr, G. Xie et al., “The complete genome sequence of Bacillus thuringiensis Al Hakam,” Journal of Bacteriology, vol. 189, no. 9, pp. 3680–3681, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Thomas, S. C. Hardies, M. Rolando et al., “Complete genomic sequence and mass spectrometric analysis of highly diverse, atypical Bacillus thuringiensis phage 0305Φ8-36,” Virology, vol. 368, no. 2, pp. 405–421, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. S. C. Hardies, J. A. Thomas, and P. Serwer, “Comparative genomics of Bacillus thuringiensis phage 0305φ8-36: defining patterns of descent in a novel ancient phage lineage,” Virology Journal, vol. 4, p. 97, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. T. D. Read, S. N. Peterson, N. Tourasse et al., “The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria,” Nature, vol. 423, no. 6935, pp. 81–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Anderson, A. Sorokin, V. Kapatral et al., “Comparative genome analysis of Bacillus cereus group genomes with Bacillus subtilis,” FEMS Microbiology Letters, vol. 250, no. 2, pp. 175–184, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Ivanova, A. Sorokin, I. Anderson et al., “Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis,” Nature, vol. 423, no. 6935, pp. 87–91, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. I. Andreeva, V. F. Nesterenko, I. S. Yurkov, Z. I. Budarina, E. V. Sineva, and A. S. Solonin, “Purification and cytotoxic properties of Bacillus cereus hemolysin II,” Protein Expression and Purification, vol. 47, no. 1, pp. 186–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Baida, Z. I. Budarina, N. P. Kuzmin, and A. S. Solonin, “Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus,” FEMS Microbiology Letters, vol. 180, no. 1, pp. 7–14, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. I. Budarina, D. V. Nikitin, N. Zenkin et al., “A new Bacillus cereus DNA-binding protein, HlyIIR, negatively regulates expression of B. cereus haemolysin II,” Microbiology, vol. 150, part 11, pp. 3691–3701, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. A. M. Shadrin, E. V. Shapyrina, A. V. Siunov, K. V. Severinov, and A. S. Solonin, “Bacillus cereus pore-forming toxins hemolysin II and cytotoxin K: polymorphism and distribution of genes among representatives of the cereus group,” Mikrobiologiia, vol. 76, no. 4, pp. 462–470, 2007. View at Google Scholar · View at Scopus
  22. T. Lund, M. L. de Buyser, and P. E. Granum, “A new cytotoxin from Bacillus cereus that may cause necrotic enteritis,” Molecular Microbiology, vol. 38, no. 2, pp. 254–261, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Fagerlund, J. Brillard, R. Fürst, M. H. Guinebretière, and P. E. Granum, “Toxin production in a rare and genetically remote cluster of strains of the Bacillus cereus group,” BMC Microbiology, vol. 7, p. 43, 2007. View at Publisher · View at Google Scholar
  24. A. Fagerlund, O. Ween, T. Lund, S. P. Hardy, and P. E. Granum, “Genetic and functional analysis of the cytK family of genes in Bacillus cereus,” Microbiology, vol. 150, part 8, pp. 2689–2697, 2004. View at Google Scholar · View at Scopus
  25. P. Stragier, B. Kunkel, L. Kroos, and R. Losick, “Chromosomal rearrangement generating a composite gene for a developmental transcriptional factor,” Science, vol. 243, no. 4890, pp. 507–512, 1989. View at Google Scholar · View at Scopus
  26. L. Kroos, B. Kunkel, and R. Losick, “Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor,” Science, vol. 243, no. 4890, pp. 526–529, 1989. View at Google Scholar · View at Scopus
  27. B. Kunkel, L. Kroos, H. Poth, P. Youngman, and R. Losick, “Temporal and spatial control of the mother-cell regulatory gene spoIIID of Bacillus subtilis,” Genes & Development, vol. 3, no. 11, pp. 1735–1744, 1989. View at Google Scholar · View at Scopus
  28. B. Kunkel, R. Losick, and P. Stragier, “The Bacillus subtilis gene for the developmental transcription factor σ(K) is generated by excision of a dispensable DNA element containing a sporulation recombinase gene,” Genes & Development, vol. 4, no. 4, pp. 525–535, 1990. View at Google Scholar · View at Scopus
  29. J. D. Haraldsen and A. L. Sonenshein, “Efficient sporulation in Clostridium difficile requires disruption of the σK gene,” Molecular Microbiology, vol. 48, no. 3, pp. 811–821, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Baba, T. Bae, O. Schneewind, F. Takeuchi, and K. Hiramatsu, “Genome sequence of Staphylococcus aureus strain newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands,” Journal of Bacteriology, vol. 190, no. 1, pp. 300–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Bae, T. Baba, K. Hiramatsu, and O. Schneewind, “Prophages of Staphylococcus aureus Newman and their contribution to virulence,” Molecular Microbiology, vol. 62, no. 4, pp. 1035–1047, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Goerke, C. Wirtz, U. Flückiger, and C. Wolz, “Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection,” Molecular Microbiology, vol. 61, no. 6, pp. 1673–1685, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Sozhamannan, M. D. Chute, F. D. McAfee et al., “The Bacillus anthracis chromosome contains four conserved, excision-proficient, putative prophages,” BMC Microbiology, vol. 6, p. 34, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. D. E. Fouts, D. A. Rasko, R. Z. Cer et al., “Sequencing Bacillus anthracis typing phages gamma and cherry reveals a common ancestry,” Journal of Bacteriology, vol. 188, no. 9, pp. 3402–3408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Auger, N. Galleron, E. Bidnenko, S. D. Ehrlich, A. Lapidus, and A. Sorokin, “The genetically remote pathogenic strain NVH391-98 of the Bacillus cereus group is representative of a cluster of thermophilic strains,” Applied and Environmental Microbiology, vol. 74, no. 4, pp. 1276–1280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Canchaya, C. Proux, G. Fournous, A. Bruttin, and H. Brüssow, “Prophage genomics,” Microbiology and Molecular Biology Reviews, vol. 67, no. 2, pp. 238–276, 2003, table of contents. View at Publisher · View at Google Scholar
  37. L. Minakhin, E. Semenova, J. Liu et al., “Genome sequence and gene expression of Bacillus anthracis bacteriophage Fah,” Journal of Molecular Biology, vol. 354, no. 1, pp. 1–15, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. R. Casjens, E. B. Gilcrease, D. A. Winn-Stapley et al., “The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy,” Journal of Bacteriology, vol. 187, no. 3, pp. 1091–1104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Schuch and V. A. Fischetti, “Detailed genomic analysis of the Wβ and γ phages infecting Bacillus anthracis: implications for evolution of environmental fitness and antibiotic resistance,” Journal of Bacteriology, vol. 188, no. 8, pp. 3037–3051, 2006. View at Publisher · View at Google Scholar
  40. S. Davison, E. Couture-Tosi, T. Candela, M. Mock, and A. Fouet, “Identification of the Bacillus anthracis γ phage receptor,” Journal of Bacteriology, vol. 187, no. 19, pp. 6742–6749, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Schuch, D. Nelson, and V. A. Fischetti, “A bacteriolytic agent that detects and kills Bacillus anthracis,” Nature, vol. 418, no. 6900, pp. 884–889, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. V. A. Fischetti, D. Nelson, and R. Schuch, “Reinventing phage therapy: are the parts greater than the sum?” Nature Biotechnology, vol. 24, no. 12, pp. 1508–1511, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Sorokin, B. Candelon, K. Guilloux et al., “Multiple-locus sequence typing analysis of Bacillus cereus and Bacillus thuringiensis reveals separate clustering and a distinct population structure of psychrotrophic strains,” Applied and Environmental Microbiology, vol. 72, no. 2, pp. 1569–1578, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. C. M. Fraser, J. A. Eisen, K. E. Nelson, I. T. Paulsen, and S. L. Salzberg, “The value of complete microbial genome sequencing (you get what you pay for),” Journal of Bacteriology, vol. 184, no. 23, pp. 6403–6405, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Branscomb and P. Predki, “On the high value of low standards,” Journal of Bacteriology, vol. 184, no. 23, pp. 6406–6409, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. S. N. Gardner, M. W. Lam, J. R. Smith, C. L. Torres, and T. R. Slezak, “Draft versus finished sequence data for DNA and protein diagnostic signature development,” Nucleic Acids Research, vol. 33, no. 18, pp. 5838–5850, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. E. Selkov, R. Overbeek, Y. Kogan et al., “Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3509–3514, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Takemaru, M. Mizuno, T. Sato, M. Takeuchi, and Y. Kobayashi, “Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis,” Microbiology, vol. 141, part 2, pp. 323–327, 1995. View at Google Scholar · View at Scopus
  49. L. F. Adams, K. L. Brown, and H. R. Whiteley, “Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter,” Journal of Bacteriology, vol. 173, no. 12, pp. 3846–3854, 1991. View at Google Scholar · View at Scopus
  50. H. Takami, K. Nakasone, Y. Takaki et al., “Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis,” Nucleic Acids Research, vol. 28, no. 21, pp. 4317–4331, 2000. View at Google Scholar · View at Scopus
  51. C. Goerke, J. Koller, and C. Wolz, “Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy, vol. 50, no. 1, pp. 171–177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Brillard and D. Lereclus, “Comparison of cytotoxin cytK promoters from Bacillus cereus strain ATCC 14579 and from a B. cereus food-poisoning strain,” Microbiology, vol. 150, part 8, pp. 2699–2705, 2004. View at Google Scholar · View at Scopus
  53. E. V. Sineva, Z. I. Andreeva-Kovalevskaya, A. M. Shadrin et al., “Expression of Bacillus cereus hemolysin II in Bacillus subtilis renders the bacteria pathogenic for the crustacean daphnia magna,” FEMS Microbiology Letters, vol. 299, no. 1, pp. 110–119, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. S. L. Tran, E. Guillemet, M. Ngo-Camus et al., “Haemolysin II is a Bacillus cereus virulence factor that induces apoptosis of macrophages,” Cellular Microbiology, vol. 13, no. 1, pp. 92–108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. B. Candelon, K. Guilloux, S. D. Ehrlich, and A. Sorokin, “Two distinct types of rRNA operons in the Bacillus cereus group,” Microbiology, vol. 150, part 3, pp. 601–611, 2004. View at Google Scholar · View at Scopus
  56. S. Dear and R. Staden, “A sequence assembly and editing program for efficient management of large projects,” Nucleic Acids Research, vol. 19, no. 14, pp. 3907–3911, 1991. View at Google Scholar · View at Scopus
  57. J. K. Bonfield, K. F. Smith, and R. Staden, “A new DNA sequence assembly program,” Nucleic Acids Research, vol. 23, no. 24, pp. 4992–4999, 1995. View at Google Scholar · View at Scopus
  58. A. V. Lukashin and M. Borodovsky, “GeneMark.hmm: new solutions for gene finding,” Nucleic Acids Research, vol. 26, no. 4, pp. 1107–1115, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Dereeper, V. Guignon, G. Blanc et al., “Phylogeny.fr: robust phylogenetic analysis for the non-specialist,” Nucleic Acids Research, vol. 36, pp. W465–469, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Leplae, G. Lima-Mendez, and A. Toussaint, “ACLAME: a CLAssification of mobile genetic elements, update 2010,” Nucleic Acids Research, vol. 38, no. 1, Article ID gkp938, pp. D57–D61, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. T. M. Lowe and S. R. Eddy, “tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence,” Nucleic Acids Research, vol. 25, no. 5, pp. 955–964, 1997. View at Publisher · View at Google Scholar · View at Scopus