Table of Contents Author Guidelines Submit a Manuscript
Genetics Research International
Volume 2012, Article ID 648207, 10 pages
http://dx.doi.org/10.1155/2012/648207
Review Article

Notch Signaling during Oogenesis in Drosophila melanogaster

1The Jackson Laboratory, Bar Harbor, ME 04609, USA
2Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA
3Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA

Received 29 February 2012; Accepted 19 April 2012

Academic Editor: Robert E. Ferrell

Copyright © 2012 Jingxia Xu and Thomas Gridley. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Artavanis-Tsakonas, M. D. Rand, and R. J. Lake, “Notch signaling: cell fate control and signal integration in development,” Science, vol. 284, no. 5415, pp. 770–776, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Penton, L. Leonard, and N. Spinner, “Notch signaling in human development and disease,” Seminars in Cell & Developmental Biology. In press.
  3. P. Ranganathan, K. L. Weaver, and A. J. Capobianco, “Notch signalling in solid tumours: a little bit of everything but not all the time,” Nature Reviews Cancer, vol. 11, no. 5, pp. 338–351, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Apelqvist, H. Li, L. Sommer et al., “Notch signalling controls pancreatic cell differentiation,” Nature, vol. 400, no. 6747, pp. 877–881, 1999. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Zhu, J. Zhang, J. Tollkuhn et al., “Sustained Notch signaling in progenitors is required for sequential emergence of distinct cell lineages during organogenesis,” Genes and Development, vol. 20, no. 19, pp. 2739–2753, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. J. Bray, “Notch signalling: a simple pathway becomes complex,” Nature Reviews Molecular Cell Biology, vol. 7, no. 9, pp. 678–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. U. M. Fiuza and A. M. Arias, “Cell and molecular biology of Notch,” Journal of Endocrinology, vol. 194, pp. 459–474, 2007. View at Google Scholar
  8. F. Jundt, R. Schwarzer, and B. Dörken, “Notch signaling in leukemias and lymphomas,” Current Molecular Medicine, vol. 8, no. 1, pp. 51–59, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Mysliwiec and M. J. Boucher, “Targeting Notch signaling in pancreatic cancer patients—rationale for new therapy,” Advances in Medical Sciences, vol. 54, no. 2, pp. 136–142, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. L. Rose, “Notch signaling pathway in ovarian cancer,” International Journal of Gynecological Cancer, vol. 19, no. 4, pp. 564–566, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. H. Van Es, M. E. Van Gijn, O. Riccio et al., “Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells,” Nature, vol. 435, no. 7044, pp. 959–963, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. T. J. Pierfelice, K. C. Schreck, C. G. Eberhart, and N. Gaiano, “Notch, neural stem cells, and brain tumors,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 73, pp. 367–375, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Garg, A. N. Muth, J. F. Ransom et al., “Mutations in NOTCH1 cause aortic valve disease,” Nature, vol. 437, no. 7056, pp. 270–274, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. O. L. Mohr, “Character changes caused by mutation of an entire region of a chromosome in Drosophila,” Genetics, vol. 4, pp. 275–282, 1919. View at Google Scholar
  15. T. H. Morgan, “Sex limited inheritance in drosophila,” Science, vol. 32, no. 812, pp. 120–122, 1910. View at Google Scholar · View at Scopus
  16. D. F. Poulson, “Chromosomal deficiencies and the embryonic development of Drosophila melanogaster,” Proceedings of the National Academy of Sciences of the United States of America, vol. 23, pp. 133–137, 1937. View at Google Scholar
  17. H. Vassin, J. Vielmetter, and J. A. Campos-Ortega, “Genetic interactions in early neurogenesis of Drosophila melanogaster,” Journal of Neurogenetics, vol. 2, no. 5, pp. 291–308, 1985. View at Google Scholar · View at Scopus
  18. K. A. Wharton, K. M. Johansen, T. Xu, and S. Artavanis-Tsakonas, “Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats,” Cell, vol. 43, no. 3, pp. 567–581, 1985. View at Google Scholar · View at Scopus
  19. J. Yochem, K. Weston, and I. Greenwald, “The Caenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch,” Nature, vol. 335, no. 6190, pp. 547–550, 1988. View at Google Scholar · View at Scopus
  20. G. Weinmaster, V. J. Roberts, and G. Lemke, “A homolog of Drosophila Notch expressed during mammalian development,” Development, vol. 113, no. 1, pp. 199–205, 1991. View at Google Scholar · View at Scopus
  21. R. Kopan and M. X. G. Ilagan, “The canonical notch signaling pathway: unfolding the activation mechanism,” Cell, vol. 137, no. 2, pp. 216–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Logeat, C. Bessia, C. Brou et al., “The Notch1 receptor is cleaved constitutively by a furin-like convertase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 14, pp. 8108–8112, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Rebay, R. J. Fleming, R. G. Fehon, L. Cherbas, P. Cherbas, and S. Artavanis-Tsakonas, “Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor,” Cell, vol. 67, no. 4, pp. 687–699, 1991. View at Google Scholar · View at Scopus
  24. J. F. De Celis and S. J. Bray, “The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe,” Development, vol. 127, no. 6, pp. 1291–1302, 2000. View at Google Scholar · View at Scopus
  25. J. Cordle, C. Redfield, M. Stacey et al., “Localization of the delta-like-1-binding site in human Notch-1 and its modulation by calcium affinity,” Journal of Biological Chemistry, vol. 283, no. 17, pp. 11785–11793, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Y. Lubman, M. X. G. Ilagan, R. Kopan, and D. Barrick, “Quantitative dissection of the notch:CSL interaction: insights into the notch-mediated transcriptional switch,” Journal of Molecular Biology, vol. 365, no. 3, pp. 577–589, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Tani, H. Kurooka, T. Aoki, N. Hashimoto, and T. Honjo, “The N- and C-terminal regions of RBP-J interact with the ankyrin repeats of Notch1 RAMIC to activate transcription,” Nucleic Acids Research, vol. 29, no. 6, pp. 1373–1380, 2001. View at Google Scholar · View at Scopus
  28. R. Kopan, J. S. Nye, and H. Weintraub, “The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD,” Development, vol. 120, no. 9, pp. 2385–2396, 1994. View at Google Scholar · View at Scopus
  29. I. Greenwald, “Structure/function studies of lin-12/Notch proteins,” Current Opinion in Genetics and Development, vol. 4, no. 4, pp. 556–562, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. K. A. Wharton, B. Yedvobnick, V. G. Finnerty, and S. Artavanis-Tsakonas, “opa: a novel family of transcribed repeats shared by the Notch locus and other developmentally regulated loci in D. melanogaster,” Cell, vol. 40, no. 1, pp. 55–62, 1985. View at Google Scholar · View at Scopus
  31. H. Komatsu, M. Y. Chao, J. Larkins-Ford et al., “OSM-11 facilitates LIN-12 Notch signaling during Caenorhabditis elegans vulval development,” PLoS Biology, vol. 6, no. 8, article e196, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Letunic, R. R. Copley, B. Pils, S. Pinkert, J. Schultz, and P. Bork, “SMART 5: domains in the context of genomes and networks,” Nucleic acids research., vol. 34, pp. D257–D260, 2006. View at Google Scholar · View at Scopus
  33. G. Weinmaster, “The ins and outs of Notch signaling,” Molecular and Cellular Neurosciences, vol. 9, no. 2, pp. 91–102, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. A. L. Parks, J. R. Stout, S. B. Shepard et al., “Structure-function analysis of delta trafficking, receptor binding and signaling in Drosophila,” Genetics, vol. 174, no. 4, pp. 1947–1961, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Shimizu, S. Chiba, K. Kumano et al., “Mouse Jagged1 physically interacts with Notch2 and other Notch receptors. Assessment by quantitative methods,” Journal of Biological Chemistry, vol. 274, no. 46, pp. 32961–32969, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Zolkiewska, “ADAM proteases: ligand processing and modulation of the Notch pathway,” Cellular and Molecular Life Sciences, vol. 65, no. 13, pp. 2056–2068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Glittenberg, C. Pitsouli, C. Garvey, C. Delidakis, and S. Bray, “Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis,” EMBO Journal, vol. 25, no. 20, pp. 4697–4706, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. T. L. Jacobsen, K. Brennan, A. M. Arias, and M. A. T. Muskavitch, “Cis-interactions between Delta and Notch modulate neurogenic signalling in Drosophila,” Development, vol. 125, no. 22, pp. 4531–4540, 1998. View at Google Scholar · View at Scopus
  39. T. Klein and A. Martinez Arias, “Interactions among Delta, Serrate and Fringe modulate Notch activity during Drosophila wing development,” Development, vol. 125, no. 15, pp. 2951–2962, 1998. View at Google Scholar · View at Scopus
  40. E. Ladi, J. T. Nichols, W. Ge et al., “The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands,” Journal of Cell Biology, vol. 170, no. 6, pp. 983–992, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. J. F. De Celis and S. Bray, “Feed-back mechanisms affecting Notch activation at the dorsoventral boundary in the Drosophila wing,” Development, vol. 124, no. 17, pp. 3241–3251, 1997. View at Google Scholar · View at Scopus
  42. E. M. Six, D. Ndiaye, G. Sauer et al., “The Notch ligand Delta1 recruits Dlg1 at cell-cell contacts and regulates cell migration,” Journal of Biological Chemistry, vol. 279, no. 53, pp. 55818–55826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Chen and I. Greenwald, “The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins,” Developmental Cell, vol. 6, no. 2, pp. 183–192, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. Q. D. Hu, B. T. Ang, M. Karsak et al., “F3/contactin acts as a functional ligand for notch during oligodendrocyte maturation,” Cell, vol. 115, no. 2, pp. 163–175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Y. Cui, Q. D. Hu, M. Tekaya et al., “NB-3/Notch1 pathway via Deltex1 promotes neural progenitor cell differentiation into oligodendrocytes,” Journal of Biological Chemistry, vol. 279, no. 24, pp. 25858–25865, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Eiraku, A. Tohgo, K. Ono et al., “DNER acts as a neuron-specific Notch ligand during Bergmann glial development,” Nature Neuroscience, vol. 8, no. 7, pp. 873–880, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. W. R. Gordon, D. Vardar-Ulu, G. Histen, C. Sanchez-Irizarry, J. C. Aster, and S. C. Blacklow, “Structural basis for autoinhibition of Notch,” Nature Structural and Molecular Biology, vol. 14, no. 4, pp. 295–300, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. A. L. Parks, K. M. Klueg, J. R. Stout, and M. A. T. Muskavitch, “Ligand endocytosis drives receptor dissociation and activation in the Notch pathway,” Development, vol. 127, no. 7, pp. 1373–1385, 2000. View at Google Scholar · View at Scopus
  49. C. Brou, F. Logeat, N. Gupta et al., “A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE,” Molecular Cell, vol. 5, no. 2, pp. 207–216, 2000. View at Google Scholar · View at Scopus
  50. R. Le Borgne and F. Schweisguth, “Notch signaling: endocytosis makes Delta signal better,” Current Biology, vol. 13, no. 7, pp. R273–R275, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. J. S. Mumm, E. H. Schroeter, M. T. Saxena et al., “A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1,” Molecular Cell, vol. 5, no. 2, pp. 197–206, 2000. View at Google Scholar · View at Scopus
  52. T. Honjo, “The shortest path from the surface to the nucleus: RBP-Jκ/Su(H) transcription factor,” Genes to Cells, vol. 1, no. 1, pp. 1–9, 1996. View at Google Scholar · View at Scopus
  53. T. Borggrefe and F. Oswald, “The Notch signaling pathway: transcriptional regulation at Notch target genes,” Cellular and Molecular Life Sciences, vol. 66, no. 10, pp. 1631–1646, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Bray and M. Furriols, “Notch pathway: making sense of suppressor of hairless,” Current Biology, vol. 11, no. 6, pp. R217–R221, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. O. Y. Lubman, S. V. Korolev, and R. Kopan, “Anchoring Notch genetics and biochemistry: structural analysis of the ankyrin domain sheds light on existing data,” Molecular Cell, vol. 13, no. 5, pp. 619–626, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. R. A. Kovall, “More complicated than it looks: assembly of Notch pathway transcription complexes,” Oncogene, vol. 27, no. 38, pp. 5099–5109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Iso, L. Kedes, and Y. Hamamori, “HES and HERP families: multiple effectors of the Notch signaling pathway,” Journal of Cellular Physiology, vol. 194, no. 3, pp. 237–255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Fischer and M. Gessler, “Delta-Notch-and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors,” Nucleic Acids Research, vol. 35, no. 14, pp. 4583–4596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Kageyama and T. Ohtsuka, “The Notch-Hes pathway in mammalian neural development,” Cell Research, vol. 9, no. 3, pp. 179–188, 1999. View at Google Scholar · View at Scopus
  60. S. Kawamata, C. Du, K. Li, and C. Lavau, “Overexpression of the Notch target genes Hes in vivo induces lymphoid and myeloid alterations,” Oncogene, vol. 21, no. 24, pp. 3855–3863, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. M. L. Deftos, E. Huang, E. W. Ojala, K. A. Forbush, and M. J. Bevan, “Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes,” Immunity, vol. 13, no. 1, pp. 73–84, 2000. View at Google Scholar · View at Scopus
  62. B. Reizis and P. Leder, “Direct induction of T lymphocyte-specific gene expression by the mammalian notch signaling pathway,” Genes and Development, vol. 16, no. 3, pp. 295–300, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. D. Amsen, A. Antov, D. Jankovic et al., “Direct regulation of Gata3 expression determines the T Helper differentiation potential of Notch,” Immunity, vol. 27, no. 1, pp. 89–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. D. J. Izon, J. C. Aster, Y. He et al., “Deltex1 redirects lymphoid progenitors to the B cell lineage by antagonizing Notch1,” Immunity, vol. 16, no. 2, pp. 231–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Lamar, G. Deblandre, D. Wettstein et al., “Nrarp is a novel intracellular component of the Notch signaling pathway,” Genes and Development, vol. 15, no. 15, pp. 1885–1899, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. A. C. Spradling, “Developmental genetics of oogenesis,” in The Development of Drosophila melanogaster, M. Bate and A. Martinez Arias, Eds., pp. 1–70, Cold Spring Harbor Cold Spring Harbor Laboratory Press, 1993. View at Google Scholar
  67. S. Horne-Badovinac and D. Bilder, “Mass transit: epithelial morphogenesis in the Drosophila egg chamber,” Developmental Dynamics, vol. 232, no. 3, pp. 559–574, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Bastock and D. St Johnston, “Drosophila oogenesis,” Current Biology, vol. 18, no. 23, pp. R1082–R1087, 2008. View at Publisher · View at Google Scholar · View at Scopus
  69. J. R. Huynh and D. St Johnston, “The origin of asymmetry: early polarisation of the Drosophila germline cyst and oocyte,” Current Biology, vol. 14, no. 11, pp. R438–R449, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Grammont, “Adherens junction remodeling by the Notch pathway in Drosophila melanogaster oogenesis,” Journal of Cell Biology, vol. 177, no. 1, pp. 139–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. X. Wu, P. S. Tanwar, and L. A. Raftery, “Drosophila follicle cells: morphogenesis in an eggshell,” Seminars in Cell and Developmental Biology, vol. 19, no. 3, pp. 271–282, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. E. J. Ward, H. R. Shcherbata, S. H. Reynolds, K. A. Fischer, S. D. Hatfield, and H. Ruohola-Baker, “Stem cells signal to the Niche through the Notch pathway in the Drosophila Ovary,” Current Biology, vol. 16, no. 23, pp. 2352–2358, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. X. Song, G. B. Call, D. Kirilly, and T. Xie, “Notch signaling controls germline stem cell niche formation in the Drosophila ovary,” Development, vol. 134, no. 6, pp. 1071–1080, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. S. Klusza and W. M. Deng, “At the crossroads of differentiation and proliferation: precise control of cell-cycle changes by multiple signaling pathways in Drosophila follicle cells,” BioEssays, vol. 33, no. 2, pp. 124–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. C. Vachias, J. L. Couderc, and M. Grammont, “A two-step Notch-dependant mechanism controls the selection of the polar cell pair in Drosophila oogenesis,” Development, vol. 137, no. 16, pp. 2703–2711, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Roth, “Drosophila oogenesis: coordinating germ line and soma,” Current Biology, vol. 11, no. 19, pp. R779–R781, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Grammont and K. D. Irvine, “Fringe and Notch specify polar cell fate during Drosophila oogenesis,” Development, vol. 128, no. 12, pp. 2243–2253, 2001. View at Google Scholar · View at Scopus
  78. L. F. Shyu, J. Sun, H. M. Chung, Y. C. Huang, and W. M. Deng, “Notch signaling and developmental cell-cycle arrest in Drosophila polar follicle cells,” Molecular Biology of the Cell, vol. 20, no. 24, pp. 5064–5073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. E. Assa-Kunik, I. L. Torres, E. D. Schejter, D. St Johnston, and B. Z. Shilo, “Drosophila follicle cells are patterned by multiple levels of Notch signaling and antagonism between the Notch and JAK/STAT pathways,” Development, vol. 134, no. 6, pp. 1161–1169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Nystul and A. Spradling, “Regulation of epithelial stem cell replacement and follicle formation in the drosophila ovary,” Genetics, vol. 184, no. 2, pp. 503–515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. I. S. Torres, H. López-Schier, and D. S. Johnston, “A notch/delta-dependent relay mechanism establishes anterior-posterior polarity in Drosophila,” Developmental Cell, vol. 5, no. 4, pp. 547–558, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. H. López-Schier and D. S. Johnston, “Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis,” Genes and Development, vol. 15, no. 11, pp. 1393–1405, 2001. View at Publisher · View at Google Scholar · View at Scopus
  83. W. M. Deng, C. Althauser, and H. Ruohola-Baker, “Notch-Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells,” Development, vol. 128, no. 23, pp. 4737–4746, 2001. View at Google Scholar · View at Scopus
  84. L. Dobens, A. Jaeger, J. S. Peterson, and L. A. Raftery, “Bunched sets a boundary for Notch signaling to pattern anterior eggshell structures during Drosophila oogenesis,” Developmental Biology, vol. 287, no. 2, pp. 425–437, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Domanitskaya and T. Schüpbach, “CoREST acts as a positive regulator of Notch signaling in the follicle cells of Drosophila melanogaster,” Journal of Cell Science, vol. 125, no. 2, pp. 399–341, 2012. View at Google Scholar
  86. J. Sun, L. Smith, A. Armento, and W. M. Deng, “Regulation of the endocycle/gene amplification switch by Notch and ecdysone signaling,” Journal of Cell Biology, vol. 182, no. 5, pp. 885–896, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. X. Wang, J. C. Adam, and D. Montell, “Spatially localized Kuzbanian required for specific activation of Notch during border cell migration,” Developmental Biology, vol. 301, no. 2, pp. 532–540, 2007. View at Publisher · View at Google Scholar · View at Scopus
  88. M. Prasad and D. J. Montell, “Cellular and molecular mechanisms of border cell migration analyzed using time-lapse live-cell imaging,” Developmental Cell, vol. 12, no. 6, pp. 997–1005, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. B. Levine, M. Jean-Francois, F. Bernardi, G. Gargiulo, and L. Dobens, “Notch signaling links interactions between the C/EBP homolog slow border cells and the GILZ homolog bunched during cell migration,” Developmental Biology, vol. 305, no. 1, pp. 217–231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. L. L. Dobens and L. A. Raftery, “Integration of epithelial patterning and morphogenesis in Drosophila ovarian follicle cells,” Developmental Dynamics, vol. 218, pp. 80–93, 2000. View at Google Scholar
  91. C. A. Berg, “The Drosophila shell game: patterning genes and morphological change,” Trends in Genetics, vol. 21, no. 6, pp. 346–355, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. E. J. Ward, X. Zhou, L. M. Riddiford, C. A. Berg, and H. Ruohola-Baker, “Border of Notch activity establishes a boundary between the two dorsal appendage tube cell types,” Developmental Biology, vol. 297, no. 2, pp. 461–470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. M. J. Boyle and C. A. Berg, “Control in time and space: tramtrack69 cooperates with notch and ecdysone to repress ectopic fate and shape changes during Drosophila egg chamber maturation,” Development, vol. 136, no. 24, pp. 4187–4197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Johnson, T. Espinoza, R. W. McGaughey, A. Rawls, and J. Wilson-Rawls, “Notch pathway genes are expressed in mammalian ovarian follicles,” Mechanisms of Development, vol. 109, no. 2, pp. 355–361, 2001. View at Publisher · View at Google Scholar · View at Scopus
  95. D. J. Trombly, T. K. Woodruff, and K. E. Mayo, “Suppression of notch signaling in the neonatal mouse ovary decreases primordial follicle formation,” Endocrinology, vol. 150, no. 2, pp. 1014–1024, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. C. P. Zhang, J. L. Yang, J. Zhang et al., “Notch signaling is involved in ovarian follicle development by regulating granulosa cell proliferation,” Endocrinology, vol. 152, no. 6, pp. 2437–2447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Haapasalo and D. M. Kovacs, “The many substrates of presenilin/γ-secretase,” Journal of Alzheimer's Disease, vol. 25, no. 1, pp. 3–28, 2011. View at Publisher · View at Google Scholar · View at Scopus