Table of Contents Author Guidelines Submit a Manuscript
Genetics Research International
Volume 2012, Article ID 689819, 14 pages
http://dx.doi.org/10.1155/2012/689819
Review Article

Transgenic Epigenetics: Using Transgenic Organisms to Examine Epigenetic Phenomena

1Department of Biology, Dalhousie University, Halifax, NS, Canada B3H 4R2
2Department of Physiology, Dalhousie University, Halifax, NS, Canada B3H 4R2

Received 16 September 2011; Revised 19 December 2011; Accepted 2 January 2012

Academic Editor: Kathleen Fitzpatrick

Copyright © 2012 Lori A. McEachern. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Sleutels and D. P. Barlow, “Investigation of elements sufficient to imprint the mouse Air promoter,” Molecular and Cellular Biology, vol. 21, no. 15, pp. 5008–5017, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. J. Cranston, T. L. Spinka, D. A. Elson, and M. S. Bartolomei, “Elucidation of the minimal sequence required to imprint H19 transgenes,” Genomics, vol. 73, no. 1, pp. 98–107, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. J. F. X. Ainscough, T. Koidet, M. Tada, S. Barton, and M. A. Surani, “Imprinting of Igf2 and H19 from a 130 kb YAC transgene,” Development, vol. 124, no. 18, pp. 3621–3632, 1997. View at Google Scholar · View at Scopus
  4. F. Cerrato, A. Sparago, I. Di Matteo et al., “The two-domain hypothesis in Beckwith-Wiedemann syndrome: autonomous imprinting of the telomeric domain of the distal chromosome 7 cluster,” Human Molecular Genetics, vol. 14, no. 4, pp. 503–511, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Gebert, D. Kunkel, A. Grinberg, and K. Pfeifer, “H19 imprinting control region methylation requires an imprinted environment only in the male germ line,” Molecular and Cellular Biology, vol. 30, no. 5, pp. 1108–1115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Matsuzaki, E. Okamura, A. Fukamizu, and K. Tanimoto, “CTCF binding is not the epigenetic mark that establishes post-fertilization methylation imprinting in the transgenic H19 ICR,” Human Molecular Genetics, vol. 19, no. 7, pp. 1190–1198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. I. S. Grewal and J. C. Rice, “Regulation of heterochromatin by histone methylation and small RNAs,” Current Opinion in Cell Biology, vol. 16, no. 3, pp. 230–238, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Matzke and J. A. Birchler, “RNAi-mediated pathways in the nucleus,” Nature Reviews Genetics, vol. 6, no. 1, pp. 24–35, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Cerutti and J. A. Casas-Mollano, “On the origin and functions of RNA-mediated silencing: from protists to man,” Current Genetics, vol. 50, no. 2, pp. 81–99, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Nakayama, J. C. Rice, B. D. Strahl, C. D. Allis, and S. I. S. Grewal, “Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly,” Science, vol. 292, no. 5514, pp. 110–113, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Wang, A. Ma, C. M. Chow et al., “Conservation of heterochromatin protein 1 function,” Molecular and Cellular Biology, vol. 20, no. 18, pp. 6970–6983, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Zemach, I. E. McDaniel, P. Silva, and D. Zilberman, “Genome-wide evolutionary analysis of eukaryotic DNA methylation,” Science, vol. 328, no. 5980, pp. 916–919, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Feng, S. J. Cokus, X. Zhang et al., “Conservation and divergence of methylation patterning in plants and animals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 19, pp. 8689–8694, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. A. J. Bannister and T. Kouzarides, “Regulation of chromatin by histone modifications,” Cell Research, vol. 21, no. 3, pp. 381–395, 2011. View at Publisher · View at Google Scholar
  15. B. Li, M. Carey, and J. L. Workman, “The role of chromatin during transcription,” Cell, vol. 128, no. 4, pp. 707–719, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. S. J. Elsässer and S. D'Arcy, “Towards a mechanism for histone chaperones,” Biochimica et Biophysica Acta. View at Publisher · View at Google Scholar
  17. A. Dean, “In the loop: long range chromatin interactions and gene regulation,” Briefings in Functional Genomics, vol. 10, no. 1, pp. 3–10, 2011. View at Google Scholar
  18. B. Schuettengruber, D. Chourrout, M. Vervoort, B. Leblanc, and G. Cavalli, “Genome Regulation by Polycomb and Trithorax Proteins,” Cell, vol. 128, no. 4, pp. 735–745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Grimaud, F. Bantignies, M. Pal-Bhadra, P. Ghana, U. Bhadra, and G. Cavalli, “RNAi components are required for nuclear clustering of polycomb group response elements,” Cell, vol. 124, no. 5, pp. 957–971, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Schmitt and R. Paro, “RNA at the steering wheel,” Genome Biology, vol. 7, no. 5, article 218, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. H. Kavi, H. R. Fernandez, W. Xie, and J. A. Birchler, “Polycomb, pairing and PIWI—RNA silencing and nuclear interactions,” Trends in Biochemical Sciences, vol. 31, no. 9, pp. 485–487, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. A. Bunker and R. E. Kingston, “Transcriptional repression by Drosophila and mammalian polycomb group proteins in transfected mammalian cells,” Molecular and Cellular Biology, vol. 14, no. 3, pp. 1721–1732, 1994. View at Google Scholar · View at Scopus
  23. G. Schotta, A. Ebert, V. Krauss et al., “Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing,” The EMBO Journal, vol. 21, no. 5, pp. 1121–1131, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. J. S. Tea and L. Luo, “The chromatin remodeling factor Bap55 functions through the TIP60 complex to regulate olfactory projection neuron dendrite targeting,” Neural Development, vol. 6, article 5, 2011. View at Publisher · View at Google Scholar
  25. J. Muller, S. Gaunt, and P. A. Lawrence, “Function of the Polycomb protein is conserved in mice and flies,” Development, vol. 121, no. 9, pp. 2847–2852, 1995. View at Google Scholar · View at Scopus
  26. J. C. Eissenberg, M. Wong, and J. C. Chrivia, “Human SRCAP and Drosophila melanogaster DOM are homologs that function in the Notch signaling pathway,” Molecular and Cellular Biology, vol. 25, no. 15, pp. 6559–6569, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Bird, “DNA methylation patterns and epigenetic memory,” Genes and Development, vol. 16, no. 1, pp. 6–21, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. B. H. Ramsahoye, D. Biniszkiewicz, F. Lyko, V. Clark, A. P. Bird, and R. Jaenisch, “Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5237–5242, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. T. R. Haines, D. I. Rodenhiser, and P. J. Ainsworth, “Allele-specific non-CpG methylation of the Nf1 gene during early mouse development,” Developmental Biology, vol. 240, no. 2, pp. 585–598, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. S. W. L. Chan, I. R. Henderson, and S. E. Jacobsen, “Gardening the genome: DNA methylation in Arabidopsis thaliana,” Nature Reviews Genetics, vol. 6, no. 5, pp. 351–360, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Lyko, B. H. Ramsahoye, and R. Jaenisch, “DNA methylation in Drosophila melanogaster,” Nature, vol. 408, no. 6812, pp. 538–540, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. L. M. Field, F. Lyko, M. Mandrioli, and G. Prantera, “DNA methylation in insects,” Insect Molecular Biology, vol. 13, no. 2, pp. 109–115, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Gruenbaum, R. Naveh-Many, H. Cedar, and A. Razin, “Sequence specificity of methylation in higher plant DNA,” Nature, vol. 292, no. 5826, pp. 860–862, 1981. View at Google Scholar · View at Scopus
  34. F. Fuks, “DNA methylation and histone modifications: teaming up to silence genes,” Current Opinion in Genetics and Development, vol. 15, no. 5, pp. 490–495, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Vaissière, C. Sawan, and Z. Herceg, “Epigenetic interplay between histone modifications and DNA methylation in gene silencing,” Mutation Research, vol. 659, no. 1-2, pp. 40–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Kloc, M. Zaratiegui, E. Nora, and R. Martienssen, “RNA interference guides histone modification during the S phase of chromosomal replication,” Current Biology, vol. 18, no. 7, pp. 490–495, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Zaratiegui, D. V. Irvine, and R. A. Martienssen, “Noncoding RNAs and gene silencing,” Cell, vol. 128, no. 4, pp. 763–776, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Bernstein and C. D. Allis, “RNA meets chromatin,” Genes and Development, vol. 19, no. 14, pp. 1635–1655, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. I. Martín-Subero and M. Esteller, “Profiling epigenetic alterations in disease,” Advances in Experimental Medicine and Biology, vol. 711, pp. 162–177, 2011. View at Publisher · View at Google Scholar
  40. S. Sharma, T. K. Kelly, and P. A. Jones, “Epigenetics in cancer,” Carcinogenesis, vol. 31, no. 1, pp. 27–36, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. R. J. Scott and M. Spielman, “Deeper into the maize: new insights into genomic imprinting in plants,” BioEssays, vol. 28, no. 12, pp. 1167–1171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Alleman and J. Doctor, “Genomic imprinting in plants: observations and evolutionary implications,” Plant Molecular Biology, vol. 43, no. 2-3, pp. 147–161, 2000. View at Google Scholar · View at Scopus
  43. S. Khosla, G. Mendiratta, and V. Brahmachari, “Genomic imprinting in the mealybugs,” Cytogenetic and Genome Research, vol. 113, no. 1–4, pp. 41–52, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. V. Lloyd, “Parental imprinting in Drosophila,” Genetica, vol. 109, no. 1-2, pp. 35–44, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. C. J. Bean, C. E. Schaner, and W. G. Kelly, “Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans,” Nature Genetics, vol. 36, no. 1, pp. 100–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. C. C. Martin and R. McGowan, “Genotype-specific modifiers of transgene methylation and expression in the zebrafish, Danio rerio,” Genetical Research, vol. 65, no. 1, pp. 21–28, 1995. View at Google Scholar · View at Scopus
  47. I. M. Morison, J. P. Ramsay, and H. G. Spencer, “A census of mammalian imprinting,” Trends in Genetics, vol. 21, no. 8, pp. 457–465, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A. J. Wood and R. J. Oakey, “Genomic imprinting in mammals: emerging themes and established theories,” PLoS genetics, vol. 2, no. 11, article e147, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. V. L. Chandler and M. Stam, “Chromatin conversations: mechanisms and implications of paramutation,” Nature Reviews Genetics, vol. 5, no. 7, pp. 532–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. M. S. Bartolomei, S. Zemel, and S. M. Tilghman, “Parental imprinting of the mouse H19 gene,” Nature, vol. 351, no. 6322, pp. 153–155, 1991. View at Publisher · View at Google Scholar · View at Scopus
  51. T. M. DeChiara, E. J. Robertson, and A. Efstratiadis, “Parental imprinting of the mouse insulin-like growth factor II gene,” Cell, vol. 64, no. 4, pp. 849–859, 1991. View at Google Scholar · View at Scopus
  52. J. L. Thorvaldsen, K. L. Duran, and M. S. Bartolomei, “Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2,” Genes and Development, vol. 12, no. 23, pp. 3693–3702, 1998. View at Google Scholar · View at Scopus
  53. J. F. X. Ainscough, L. Dandolo, and M. Azim Surani, “Appropriate expression of the mouse H19 gene utilises three or more distinct enhancer regions spread over more than 130 kb,” Mechanisms of Development, vol. 91, no. 1-2, pp. 365–368, 2000. View at Publisher · View at Google Scholar · View at Scopus
  54. P. A. Leighton, J. R. Saam, R. S. Ingram, C. L. Stewart, and S. M. Tilghman, “An enhancer deletion affects both H19 and Igf2 expression,” Genes and Development, vol. 9, no. 17, pp. 2079–2089, 1995. View at Google Scholar · View at Scopus
  55. K. Davies, L. Bowden, P. Smith et al., “Disruption of mesodermal enhancers for Igf2 in the minute mutant,” Development, vol. 129, no. 7, pp. 1657–1668, 2002. View at Google Scholar · View at Scopus
  56. C. R. Kaffer, M. Srivastava, K. Y. Park et al., “A transcriptional insulator at the imprinted H19/Igf2 locus,” Genes and Development, vol. 14, no. 15, pp. 1908–1919, 2000. View at Google Scholar · View at Scopus
  57. T. Moore, M. Constancia, M. Zubair et al., “Multiple imprinted sense and antisense transcripts, differential methylation and tandem repeats in a putative imprinting control region upstream of mouse Igf2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 23, pp. 12509–12514, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Constância, W. Dean, S. Lopes, T. Moore, G. Kelsey, and W. Reik, “Deletion of a silencer element in Igf2 results in loss of imprinting independent of H19,” Nature Genetics, vol. 26, no. 2, pp. 203–206, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Murrell, S. Heeson, L. Bowden et al., “An intragenic methylated region in the imprinted Igf2 gene augments transcription,” EMBO Reports, vol. 2, no. 12, pp. 1101–1106, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Eden, M. Constancia, T. Hashimshony et al., “An upstream repressor element plays a role in Igf2 imprinting,” The EMBO Journal, vol. 20, no. 13, pp. 3518–3525, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Koide, J. Ainscough, M. Wijgerde, and M. A. Surani, “Comparative analysis of Igf-2/H19 imprinted domain: identification of a highly conserved intergenic DNase I hypersensitive region,” Genomics, vol. 24, no. 1, pp. 1–8, 1994. View at Publisher · View at Google Scholar · View at Scopus
  62. J. F. X. Ainscough, R. M. John, S. C. Barton, and M. Azim Surani, “A skeletal muscle-specific mouse Igf2 repressor lies 40 kb downstream of the gene,” Development, vol. 127, no. 18, pp. 3923–3930, 2000. View at Google Scholar · View at Scopus
  63. B. K. Jones, J. Levorse, and S. M. Tilghman, “Deletion of a nuclease-sensitive region between the Igf2 and H19 genes leads to Igf2 misregulation and increased adiposity,” Human Molecular Genetics, vol. 10, no. 8, pp. 807–814, 2001. View at Google Scholar · View at Scopus
  64. H. Moon, G. Filippova, D. Loukinov et al., “CTCF is conserved from Drosophila to humans and confers enhancer blocking of the Fab-8 insulator,” EMBO Reports, vol. 6, no. 2, pp. 165–170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. W. A. MacDonald, D. Menon, N. J. Bartlett et al., “The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster,” BMC Biology, vol. 8, article 105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. A. T. Hark, C. J. Schoenherr, D. J. Katz, R. S. Ingram, J. M. Levorse, and S. M. Tilghman, “CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus,” Nature, vol. 405, no. 6785, pp. 486–489, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. A. C. Bell and G. Felsenfeld, “Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene,” Nature, vol. 405, no. 6785, pp. 482–485, 2000. View at Publisher · View at Google Scholar · View at Scopus
  68. K. D. Tremblay, J. R. Saam, R. S. Ingram, S. M. Tilghman, and M. S. Bartolomei, “A paternal-specific methylation imprint marks the alleles of the mouse H19 gene,” Nature Genetics, vol. 9, no. 4, pp. 407–413, 1995. View at Google Scholar · View at Scopus
  69. S. Kurukuti, V. K. Tiwari, G. Tavoosidana et al., “CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 28, pp. 10684–10689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. A. Murrell, S. Heeson, and W. Reik, “Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops,” Nature Genetics, vol. 36, no. 8, pp. 889–893, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Y. Young, S. Jeong, Q. Rong, K. Y. Park, J. H. Chung, and K. Pfeifer, “Analysis of the H19ICR insulator,” Molecular and Cellular Biology, vol. 27, no. 9, pp. 3499–3510, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Li, J. F. Hu, X. Qiu et al., “CTCF regulates allelic expression of Igf2 by orchestrating a promoter-polycomb repressive complex 2 intrachromosomal loop,” Molecular and Cellular Biology, vol. 28, no. 20, pp. 6473–6482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. L. Han, D. H. Lee, and P. E. Szabó, “CTCF is the master organizer of domain-wide allele-specific chromatin at the H19/Igf2 imprinted region,” Molecular and Cellular Biology, vol. 28, no. 3, pp. 1124–1135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. R. I. Verona, J. L. Thorvaldsen, K. J. Reese, and M. S. Bartolomei, “The transcriptional status but not the imprinting control region determines allele-specific histone modifications at the imprinted H19 locus,” Molecular and Cellular Biology, vol. 28, no. 1, pp. 71–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. S. R. Schulze and L. L. Wallrath, “Gene regulation by chromatin structure: paradigms established in Drosophila melanogaster,” Annual Review of Entomology, vol. 52, pp. 171–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. F. Lyko, J. D. Brenton, M. A. Surani, and R. Paro, “An imprinting element from the mouse H19 locus functions as a silencer in Drosophila,” Nature Genetics, vol. 16, no. 2, pp. 171–173, 1997. View at Publisher · View at Google Scholar · View at Scopus
  77. R. A. Drewell, J. D. Brenton, J. F. X. Ainscough et al., “Deletion of a silencer element disrupts H19 imprinting independently of a DNA methylation epigenetic switch,” Development, vol. 127, no. 16, pp. 3419–3428, 2000. View at Google Scholar · View at Scopus
  78. K. L. Arney, E. Bae, C. Olsen, and R. A. Drewell, “The human and mouse H19 imprinting control regions harbor an evolutionarily conserved silencer element that functions on transgenes in Drosophila,” Development Genes and Evolution, vol. 216, no. 12, pp. 811–819, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Schoenfelder, G. Smits, P. Fraser, W. Reik, and R. Paro, “Non-coding transcripts in the H19 imprinting control region mediate gene silencing in transgenic Drosophila,” EMBO Reports, vol. 8, no. 11, pp. 1068–1073, 2007. View at Publisher · View at Google Scholar · View at Scopus
  80. D. Umlauf, Y. Goto, R. Cao et al., “Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes,” Nature Genetics, vol. 36, no. 12, pp. 1296–1300, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. C. Maison, D. Bailly, A. H. F. M. Peters et al., “Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component,” Nature Genetics, vol. 30, no. 3, pp. 329–334, 2002. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Mayer, K. M. Schmitz, J. Li, I. Grummt, and R. Santoro, “Intergenic transcripts regulate the epigenetic state of rRNA genes,” Molecular Cell, vol. 22, no. 3, pp. 351–361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. S. Erhardt, F. Lyko, J. F. X. Ainscough, M. A. Surani, and R. Paro, “Polycomb-group proteins are involved in silencing processes caused by a transgenic element from the murine imprinted H19/Igf2 region in Drosophila,” Development Genes and Evolution, vol. 213, no. 7, pp. 336–344, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. Y. Jinno, K. Sengoku, M. Nakao et al., “Mouse/human sequence divergence in a region with a paternal-specific methylation imprint at the human H19 locus,” Human Molecular Genetics, vol. 5, no. 8, pp. 1155–1161, 1996. View at Google Scholar · View at Scopus
  85. B. K. Jones, J. Levorse, and S. M. Tilghman, “A human H19 transgene exhibits impaired paternal-specific imprint acquisition and maintenance in mice,” Human Molecular Genetics, vol. 11, no. 4, pp. 411–418, 2002. View at Google Scholar · View at Scopus
  86. D. R. Dorer and S. Henikoff, “Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans,” Genetics, vol. 147, no. 3, pp. 1181–1190, 1997. View at Google Scholar · View at Scopus
  87. D. Garrick, S. Fiering, D. I. K. Martin, and E. Whitelaw, “Repeat-induced gene silencing in mammals,” Nature Genetics, vol. 18, no. 1, pp. 56–59, 1998. View at Publisher · View at Google Scholar · View at Scopus
  88. W. J. Haun and N. M. Springer, “Maternal and paternal alleles exhibit differential histone methylation and acetylation at maize imprinted genes,” Plant Journal, vol. 56, no. 6, pp. 903–912, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Goday and M. F. Ruiz, “Differential acetylation of histones H3 and H4 in paternal and maternal germline chromosomes during development of sciarid flies,” Journal of Cell Science, vol. 115, part 24, pp. 4765–4775, 2002. View at Publisher · View at Google Scholar · View at Scopus
  90. P. G. Greciano and C. Goday, “Methylation of histone H3 at Lys4 differs between paternal and maternal chromosomes in Sciara ocellaris germline development,” Journal of Cell Science, vol. 119, part 22, pp. 4667–4677, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. V. Joanis and V. Lloyd, “Genomic imprinting in Drosophila is maintained by the products of Suppressor of variegation and trithorax group, but not Polycomb group, genes,” Molecular Genetics and Genomics, vol. 268, no. 1, pp. 103–112, 2002. View at Publisher · View at Google Scholar · View at Scopus
  92. P. E. Jullien, A. Katz, M. Oliva, N. Ohad, and F. Berger, “Polycomb group complexes self-regulate imprinting of the polycomb group gene MEDEA in Arabidopsis,” Current Biology, vol. 16, no. 5, pp. 486–492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  93. C. Köhler, D. R. Page, V. Gagliardini, and U. Grossniklaus, “The Arabidopsis thaliana MEDEA Polycomb group protein controls expression of PHERES1 by parental imprinting,” Nature Genetics, vol. 37, no. 1, pp. 28–30, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. F. Lyko, K. Buiting, B. Horsthemke, and R. Paro, “Identification of a silencing element in the human 15q11-q13 imprinting center by using transgenic Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1698–1702, 1998. View at Publisher · View at Google Scholar · View at Scopus
  95. B. Kantor, Y. Kaufman, K. Makedonski, A. Razin, and R. Shemer, “Establishing the epigenetic status of the Prader-Willi/Angelman imprinting center in the gametes and embryo,” Human Molecular Genetics, vol. 13, no. 22, pp. 2767–2779, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. B. Kantor, K. Makedonski, Y. Green-Finberg, R. Shemer, and A. Razin, “Control elements within the PWS/AS imprinting box and their function in the imprinting process,” Human Molecular Genetics, vol. 13, no. 7, pp. 751–762, 2004. View at Publisher · View at Google Scholar · View at Scopus
  97. B. Kantor, R. Shemer, and A. Razin, “The Prader-Willi/Angelman imprinted domain and its control center,” Cytogenetic and Genome Research, vol. 113, no. 1–4, pp. 300–305, 2006. View at Publisher · View at Google Scholar · View at Scopus
  98. Y. Kaufman, M. Heled, J. Perk, A. Razin, and R. Shemer, “Protein-binding elements establish in the oocyte the primary imprint of the Prader-Willi/Angelman syndromes domain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 25, pp. 10242–10247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  99. T. Arima, K. Yamasaki, R. M. John et al., “The human HYMAI/PLAGL1 differentially methylated region acts as an imprint control region in mice,” Genomics, vol. 88, no. 5, pp. 650–658, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. V. L. Chandler, J. P. Radicella, T. P. Robbins, J. Chen, and D. Turks, “Two regulatory genes of the maize anthocyanin pathway are homologous: isolation of B utilizing R genomic sequences,” The Plant Cell, vol. 1, no. 12, pp. 1175–1183, 1989. View at Publisher · View at Google Scholar · View at Scopus
  101. E. H. Coe, “The properties, origin, and mechanism of conversion-type inheritance at the B locus in maize,” Genetics, vol. 53, no. 6, pp. 1035–1063, 1966. View at Google Scholar
  102. G. I. Patterson, C. J. Thorpe, and V. L. Chandler, “Paramutation, an allelic interaction, is associated with a stable and heritable reduction of transcription of the maize b regulatory gene,” Genetics, vol. 135, no. 3, pp. 881–894, 1993. View at Google Scholar · View at Scopus
  103. M. Stam, C. Belele, J. E. Dorweiler, and V. L. Chandler, “Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation,” Genes and Development, vol. 16, no. 15, pp. 1906–1918, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Haring, R. Bader, M. Louwers, A. Schwabe, R. van Driel, and M. Stam, “The role of DNA methylation, nucleosome occupancy and histone modifications in paramutation,” Plant Journal, vol. 63, no. 3, pp. 366–378, 2010. View at Publisher · View at Google Scholar
  105. M. Louwers, R. Bader, M. Haring, R. van Driel, W. de Laat, and M. Stam, “Tissue- and expression level-specific chromatin looping at maize b1 epialleles,” Plant Cell, vol. 21, no. 3, pp. 832–842, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. J. E. Dorweiler, C. C. Carey, K. M. Kubo, J. B. Hollick, J. L. Kermicle, and V. L. Chandler, “Mediator of paramutation 1 is required for establishment and maintenance of paramutation at multiple maize loci,” Plant Cell, vol. 12, no. 11, pp. 2101–2118, 2000. View at Publisher · View at Google Scholar · View at Scopus
  107. M. Alleman, L. Sidorenko, K. McGinnis et al., “An RNA-dependent RNA polymerase is required for paramutation in maize,” Nature, vol. 442, no. 7100, pp. 295–298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  108. L. Sidorenko, J. E. Dorweiler, A. M. Cigan et al., “A dominant mutation in mediator of paramutation2, one of three second-largest subunits of a plant-specific RNA polymerase, disrupts multiple siRNA silencing processes,” PLoS Genetics, vol. 5, no. 11, Article ID e1000725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. J. B. Hollick, J. L. Kermicle, and S. E. Parkinson, “Rmr6 maintains meiotic inheritance of paramutant states in Zea mays,” Genetics, vol. 171, no. 2, pp. 725–740, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. K. F. Erhard Jr., J. L. Stonaker, S. E. Parkinson, J. P. Lim, C. J. Hale, and J. B. Hollick, “RNA polymerase IV functions in paramutation in Zea mays,” Science, vol. 323, no. 5918, pp. 1201–1205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. D. Pontier, G. Yahubyan, D. Vega et al., “Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis,” Genes and Development, vol. 19, no. 17, pp. 2030–2040, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. A. T. Wierzbicki, J. R. Haag, and C. S. Pikaard, “Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes,” Cell, vol. 135, no. 4, pp. 635–648, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. T. Kanno, B. Huettel, M. F. Mette et al., “Atypical RNA polymerase subunits required for RNA-directed DNA methylation,” Nature Genetics, vol. 37, no. 7, pp. 761–765, 2005. View at Publisher · View at Google Scholar · View at Scopus
  114. A. J. Herr, M. B. Jensen, T. Dalmay, and D. C. Baulcombe, “RNA polymerase IV directs silencing of endogenous DNA,” Science, vol. 308, no. 5718, pp. 118–120, 2005. View at Publisher · View at Google Scholar · View at Scopus
  115. Y. Onodera, J. R. Haag, T. Ream, P. C. Nunes, O. Pontes, and C. S. Pikaard, “Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation,” Cell, vol. 120, no. 5, pp. 613–622, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. C. S. Pikaard, J. R. Haag, T. Ream, and A. T. Wierzbicki, “Roles of RNA polymerase IV in gene silencing,” Trends in Plant Science, vol. 13, no. 7, pp. 390–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. K. Brzeska, J. Brzeski, J. Smith, and V. L. Chandler, “Transgenic expression of CBBP, a CXC domain protein, establishes paramutation in maize,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 12, pp. 5516–5521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. V. L. Chandler, “Paramutation: from maize to mice,” Cell, vol. 128, no. 4, pp. 641–645, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. M. A. Arteaga-Vazquez and V. L. Chandler, “Paramutation in maize: RNA mediated trans-generational gene silencing,” Current Opinion in Genetics & Gevelopment, vol. 20, no. 2, pp. 156–163, 2010. View at Google Scholar · View at Scopus
  120. S. W. Chan, X. Zhang, Y. V. Bernatavichute, and S. E. Jacobsen, “Two-step recruitment of RNA-directed DNA methylation to tandem repeats,” PLoS Biology, vol. 4, no. 11, article e363, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. L. A. McEachern, Inter-kingdom epigenetics: characterization of maize b1 tandem repeat-mediated silencing in Drosophila melanogaster, Ph.D. thesis, Dalhousie University, Halifax, Canada, 2010, http://dalspace.library.dal.ca/handle/10222/13036.
  122. E. Kurenova, L. Champion, H. Biessmann, and J. M. Mason, “Directional gene silencing induced by a complex subtelomeric satellite from Drosophila,” Chromosoma, vol. 107, no. 5, pp. 311–320, 1998. View at Publisher · View at Google Scholar · View at Scopus
  123. K. A. Haynes, A. A. Caudy, L. Collins, and S. C. R. Elgin, “Element 1360 and RNAi components contribute to HP1-dependent silencing of a pericentric reporter,” Current Biology, vol. 16, no. 22, pp. 2222–2227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. F. K. Teixeira and V. Colot, “Repeat elements and the Arabidopsis DNA methylation landscape,” Heredity, vol. 105, no. 1, pp. 14–23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. C. M. Suter and D. I. K. Martin, “Paramutation: the tip of an epigenetic iceberg?” Trends in Genetics, vol. 26, no. 1, pp. 9–14, 2010. View at Publisher · View at Google Scholar · View at Scopus