Table of Contents Author Guidelines Submit a Manuscript
Genetics Research International
Volume 2012, Article ID 737416, 16 pages
http://dx.doi.org/10.1155/2012/737416
Review Article

Mechanistic Roles of Noncoding RNAs in Lung Cancer Biology and Their Clinical Implications

1British Columbia Cancer Research Center, Vancouver, BC, Canada V5Z 1L3
2Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada V5Z 1L3
3Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada V6T 2B5

Received 16 September 2011; Accepted 8 March 2012

Academic Editor: Elfride De Baere

Copyright © 2012 Katey S. S. Enfield et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. P. Ponting and T. G. Belgard, “Transcribed dark matter: meaning or myth?” Human Molecular Genetics, vol. 19, no. 2, pp. R162–R168, 2010. View at Google Scholar · View at Scopus
  2. E. Birney, J. A. Stamatoyannopoulos, A. Dutta et al., “Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project,” Nature, vol. 447, no. 7146, pp. 799–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Carninci, T. Kasukawa, S. Katayama et al., “The transcriptional landscape of the mammalian genome,” Science, vol. 309, no. 5740, pp. 1559–1563, 2005. View at Google Scholar · View at Scopus
  4. E. A. Gibb, C. J. Brown, and W. L. Lam, “The functional role of long non-coding RNA in human carcinomas,” Molecular Cancer, vol. 10, article 38, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Hung and H. Y. Chang, “Long noncoding RNA in genome regulation: prospects and mechanisms,” RNA Biology, vol. 7, no. 5, pp. 582–585, 2010. View at Google Scholar · View at Scopus
  6. R. J. Taft, K. C. Pang, T. R. Mercer, M. Dinger, and J. S. Mattick, “Non-coding RNAs: regulators of disease,” Journal of Pathology, vol. 220, no. 2, pp. 126–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer Journal for Clinicians, vol. 59, no. 4, pp. 225–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Sato, D. S. Shames, A. F. Gazdar, and J. D. Minna, “A translational view of the molecular pathogenesis of lung cancer,” Journal of Thoracic Oncology, vol. 2, no. 4, pp. 327–343, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Aharonov, D. Lebanony, H. Benjamin et al., “Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma,” Journal of Clinical Oncology, vol. 27, no. 12, pp. 2030–2037, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Markou, E. G. Tsaroucha, L. Kaklamanis, M. Fotinou, V. Georgoulias, and E. S. Lianidou, “Prognostic value of mature MicroRNA-21 and MicroRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR,” Clinical Chemistry, vol. 54, no. 10, pp. 1696–1704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Yanaihara, N. Caplen, E. Bowman et al., “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis,” Cancer Cell, vol. 9, no. 3, pp. 189–198, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. L. Yu, H. Y. Chen, G. C. Chang et al., “MicroRNA signature predicts survival and relapse in lung cancer,” Cancer Cell, vol. 13, no. 1, pp. 48–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Ji, S. Diederichs, W. Wang et al., “MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer,” Oncogene, vol. 22, no. 39, pp. 8031–8041, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Bortoluzzi, M. Biasiolo, and A. Bisognin, “microRNA-offset RNAs (moRNAs): by-product spectators or functional players?” Trends in Molecular Medicine, vol. 17, no. 9, pp. 473–474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Cheng, J. M. Guo, B. X. Xiao et al., “PiRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells,” Clinica Chimica Acta, vol. 412, no. 17-18, pp. 1621–1625, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. J. R. Lytle, T. A. Yario, and J. A. Steitz, “Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5′ UTR as in the 3′ UTR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9667–9672, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Winter and S. Diederichs, “MicroRNA biogenesis and cancer,” Methods in Molecular Biology, vol. 676, pp. 3–22, 2011. View at Google Scholar · View at Scopus
  21. A. Grimson, K. K. H. Farh, W. K. Johnston, P. Garrett-Engele, L. P. Lim, and D. P. Bartel, “MicroRNA targeting specificity in mammals: determinants beyond seed pairing,” Molecular Cell, vol. 27, no. 1, pp. 91–105, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Yekta, I. H. Shih, and D. P. Bartel, “MicroRNA-directed cleavage of HOXB8 mRNA,” Science, vol. 304, no. 5670, pp. 594–596, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. A. B. Shyu, M. F. Wilkinson, and A. Van Hoof, “Messenger RNA regulation: to translate or to degrade,” The EMBO Journal, vol. 27, no. 3, pp. 471–481, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. M. V. Iorio and C. M. Croce, “MicroRNAs in cancer: small molecules with a huge impact,” Journal of Clinical Oncology, vol. 27, no. 34, pp. 5848–5856, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Eulalio, J. Rehwinkel, M. Stricker et al., “Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing,” Genes & Development, vol. 21, no. 20, pp. 2558–2570, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Kozomara and S. Griffiths-Jones, “MiRBase: integrating microRNA annotation and deep-sequencing data,” Nucleic Acids Research, vol. 39, no. 1, pp. D152–D157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Zhang, J. Huang, N. Yang et al., “microRNAs exhibit high frequency genomic alterations in human cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 24, pp. 9136–9141, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. G. A. Calin, C. Sevignani, C. D. Dumitru et al., “Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 2999–3004, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Dacic, L. Kelly, Y. Shuai, and M. N. Nikiforova, “MiRNA expression profiling of lung adenocarcinomas: correlation with mutational status,” Modern Pathology, vol. 23, no. 12, pp. 1577–1582, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Takamizawa, H. Konishi, K. Yanagisawa et al., “Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival,” Cancer Research, vol. 64, no. 11, pp. 3753–3756, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Garofalo, G. Di Leva, G. Romano et al., “miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation,” Cancer Cell, vol. 16, no. 6, pp. 498–509, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Gallardo, A. Navarro, N. Viñolas et al., “miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer,” Carcinogenesis, vol. 30, no. 11, pp. 1903–1909, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Jiang, Q. Huang, S. Zhang et al., “Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells,” BMC Cancer, vol. 10, article 318, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Wang, C. Ling, Y. Bai, and J. Zhao, “MicroRNA-206 is associated with invasion and metastasis of lung cancer,” Anatomical Record, vol. 294, no. 1, pp. 88–92, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Y. Lin, S. L. Yu, and P. C. Yang, “MicroRNA in lung cancer,” British Journal of Cancer, vol. 103, no. 8, pp. 1144–1148, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. O. Wapinski and H. Y. Chang, “Long noncoding RNAs and human disease,” Trends in Cell Biology, vol. 21, no. 6, pp. 354–361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Gong and L. E. Maquat, “LncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 39 UTRs via Alu eleme,” Nature, vol. 470, no. 7333, pp. 284–290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Kotake, T. Nakagawa, K. Kitagawa et al., “Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15 INK4B tumor suppressor gene,” Oncogene, vol. 30, no. 16, pp. 1956–1962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. R. A. Gupta, N. Shah, K. C. Wang et al., “Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis,” Nature, vol. 464, no. 7291, pp. 1071–1076, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. T. R. Mercer, M. E. Dinger, and J. S. Mattick, “Long non-coding RNAs: insights into functions,” Nature Reviews Genetics, vol. 10, no. 3, pp. 155–159, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. T. R. Mercer, M. E. Dinger, S. M. Sunkin, M. F. Mehler, and J. S. Mattick, “Specific expression of long noncoding RNAs in the mouse brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 716–721, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. N. Cabili, C. Trapnell, L. Goff et al., “Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses,” Genes & Development, vol. 25, no. 18, pp. 1915–1927, 2011. View at Google Scholar
  43. M. Guttman, J. Donaghey, B. W. Carey et al., “lincRNAs act in the circuitry controlling pluripotency and differentiation,” Nature, vol. 477, pp. 295–300, 2011. View at Google Scholar
  44. J. C. Castle, C. D. Armour, M. Löwer et al., “Digital genome-wide ncRNA expression, including SnoRNAs, across 11 human tissues using polya-neutral amplification,” PLoS One, vol. 5, no. 7, Article ID e11779, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Lipovich, R. Johnson, and C.-Y. Lin, “MacroRNA underdogs in a microRNA world: evolutionary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA,” Biochimica et Biophysica Acta, vol. 1799, no. 9, pp. 597–615, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Beysen, J. Raes, B. P. Leroy et al., “Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in blepharophimosis syndrome,” American Journal of Human Genetics, vol. 77, no. 2, pp. 205–218, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. W. J. Lukiw, P. Handley, L. Wong, and D. R. C. McLachlan, “BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD),” Neurochemical Research, vol. 17, no. 6, pp. 591–597, 1992. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Jin and S. T. Warren, “Understanding the molecular basis of fragile X syndrome,” Human Molecular Genetics, vol. 9, no. 6, pp. 901–908, 2000. View at Google Scholar · View at Scopus
  49. J. L. Rinn, M. Kertesz, J. K. Wang et al., “Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs,” Cell, vol. 129, no. 7, pp. 1311–1323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. V. Tripathi, J. D. Ellis, Z. Shen et al., “The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation,” Molecular Cell, vol. 39, no. 6, pp. 925–938, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Osada and T. Takahashi, “let-7 and miR-17-92: small-sized major players in lung cancer development,” Cancer Science, vol. 102, no. 1, pp. 9–17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Schultz, P. Lorenz, G. Gross, S. Ibrahim, and M. Kunz, “MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth,” Cell Research, vol. 18, no. 5, pp. 549–557, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Esquela-Kerscher, P. Trang, J. F. Wiggins et al., “The let-7 microRNA reduces tumor growth in mouse models of lung cancer,” Cell Cycle, vol. 7, no. 6, pp. 759–764, 2008. View at Google Scholar · View at Scopus
  54. C. D. Johnson, A. Esquela-Kerscher, G. Stefani et al., “The let-7 microRNA represses cell proliferation pathways in human cells,” Cancer Research, vol. 67, no. 16, pp. 7713–7722, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Hayashita, H. Osada, Y. Tatematsu et al., “A polycistronic MicroRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation,” Cancer Research, vol. 65, no. 21, pp. 9628–9632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. S. Diederichs and D. A. Haber, “Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing,” Cancer Research, vol. 66, no. 12, pp. 6097–6104, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Lodygin, V. Tarasov, A. Epanchintsev et al., “Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer,” Cell Cycle, vol. 7, no. 16, pp. 2591–2600, 2008. View at Google Scholar · View at Scopus
  58. B. Brueckner, C. Stresemann, R. Kuner et al., “The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function,” Cancer Research, vol. 67, no. 4, pp. 1419–1423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. W. Nasser, J. Datta, G. Nuovo et al., “Down-regulation of micro-RNA-1 (miR-1) in lung cancer: suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1,” The Journal of Biological Chemistry, vol. 283, no. 48, pp. 33394–33405, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Fabbri, R. Garzon, A. Cimmino et al., “MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 40, pp. 15805–15810, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. M. A. Saunders, H. Liang, and W. H. Li, “Human polymorphism at microRNAs and microRNA target sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 9, pp. 3300–3305, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. A. E. Pasquinelli, B. J. Reinhart, F. Slack et al., “Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA,” Nature, vol. 408, no. 6808, pp. 86–89, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Wu, N. Jolicoeur, Z. Li et al., “Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs,” Carcinogenesis, vol. 29, no. 9, pp. 1710–1716, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. Z. Hu, J. Chen, T. Tian et al., “Genetic variants of miRNA sequences and non-small cell lung cancer survival,” The Journal of Clinical Investigation, vol. 118, no. 7, pp. 2600–2608, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. T. Tian, Y. Shu, J. Chen et al., “A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 4, pp. 1183–1187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. Z. Hu, Y. Shu, Y. Chen et al., “Genetic polymorphisms in the precursor microRNA flanking region and non-small cell lung cancer survival,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 5, pp. 641–648, 2011. View at Publisher · View at Google Scholar · View at Scopus
  67. M. J. Kim, S. S. Yoo, Y. Y. Choi, and J. Y. Park, “A functional polymorphism in the pre-microRNA-196a2 and the risk of lung cancer in a Korean population,” Lung Cancer, vol. 69, no. 1, pp. 127–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. P. J. Mishra, P. J. Mishra, D. Banerjee, and J. R. Bertino, “MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: introducing microRNA pharmacogenomics,” Cell Cycle, vol. 7, no. 7, pp. 853–858, 2008. View at Google Scholar · View at Scopus
  69. F. Wang, Y. L. Ma, P. Zhang et al., “A genetic variant in microRNA-196a2 is associated with increased cancer risk: a meta-analysis,” Molecular Biology Reports, vol. 39, no. 1, pp. 269–275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. D. Betel, M. Wilson, A. Gabow, D. S. Marks, and C. Sander, “The microRNA.org resource: targets and expression,” Nucleic Acids Research, vol. 36, no. 1, pp. D149–D153, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Campayo, A. Navarro, N. Viñolas et al., “A dual role for KRT81: a miR-SNP associated with recurrence in Non-Small-Cell lung cancer and a novel marker of squamous cell lung carcinoma,” PLoS One, vol. 6, no. 7, Article ID e22509, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Rotunno, Y. Zhao, A. W. Bergen et al., “Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival,” British Journal of Cancer, vol. 103, no. 12, pp. 1870–1874, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. X. Fang, C. Wu, J. Chang et al., “Genetic variation in an miRNA-1827 binding site in MYCL1 alters susceptibility to small-cell lung cancer,” Cancer Research, vol. 71, no. 15, pp. 5175–5181, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. L. J. Chin, E. Ratner, S. Leng et al., “A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk,” Cancer Research, vol. 68, no. 20, pp. 8535–8540, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. S. Hong, “Association between microRNA196a2 rs11614913 genotypes and the risk of non-small cell lung cancer in Korean population,” Journal of Preventive Medicine and Public Health, vol. 44, no. 3, pp. 125–130, 2011. View at Google Scholar
  76. H. Chu, M. Wang, D. Shi et al., “Hsa-miR-196a2 Rs11614913 polymorphism contributes to cancer susceptibility: evidence from 15 case-control studies,” PLoS One, vol. 6, no. 3, Article ID e18108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. B. D. Harfe, “MicroRNAs in vertebrate development,” Current Opinion in Genetics and Development, vol. 15, no. 4, pp. 410–415, 2005. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Crawford, K. Batte, L. Yu et al., “MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer,” Biochemical and Biophysical Research Communications, vol. 388, no. 3, pp. 483–489, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. L. Du, J. J. Schageman, Irnov et al., “MicroRNA expression distinguishes SCLC from NSCLC lung tumor cells and suggests a possible pathological relationship between SCLCs and NSCLCs,” Journal of Experimental and Clinical Cancer Research, vol. 29, no. 1, article 75, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. K. S. S. Enfield, G. L. Stewart, L. A. Pikor et al., “MicroRNA gene dosage alterations and drug response in lung cancer,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 474632, 15 pages, 2011. View at Publisher · View at Google Scholar
  81. R. Hummel, D. J. Hussey, and J. Haier, “MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types,” European Journal of Cancer, vol. 46, no. 2, pp. 298–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. G. J. Weiss, L. T. Bemis, E. Nakajima et al., “EGFR regulation by microRNA in lung cancer: correlation with clinical response and survival to gefitinib and EGFR expression in cell lines,” Annals of Oncology, vol. 19, no. 6, pp. 1053–1059, 2008. View at Publisher · View at Google Scholar · View at Scopus
  83. D. L. Gibbons, W. Lin, C. J. Creighton et al., “Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression,” Genes & Development, vol. 23, no. 18, pp. 2140–2151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. D. Barsyte-Lovejoy, S. K. Lau, P. C. Boutros et al., “The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis,” Cancer Research, vol. 66, no. 10, pp. 5330–5337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Kondo and T. Takahashi, “Altered genomic imprinting in the IGF2 and H19 genes in human lung cancer,” Nippon Rinsho, vol. 54, no. 2, pp. 492–496, 1996. View at Google Scholar · View at Scopus
  86. P. T. Wing, T. W. L. Wong, A. H. H. Cheung, C. N. N. Co, and T. K. Tim, “Induction of drug resistance and transformation in human cancer cells by the noncoding RNA CUDR,” RNA, vol. 13, no. 6, pp. 890–898, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. W. Chen, W. Böcker, J. Brosius, and H. Tiedge, “Expression of neural BC200 RNA in human tumours,” Journal of Pathology, vol. 183, no. 3, pp. 345–351, 1997. View at Google Scholar
  88. M. S. Kumar, J. Lu, K. L. Mercer, T. R. Golub, and T. Jacks, “Impaired microRNA processing enhances cellular transformation and tumorigenesis,” Nature Genetics, vol. 39, no. 5, pp. 673–677, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. S. A. Melo, C. Moutinho, S. Ropero et al., “A genetic defect in exportin-5 traps precursor MicroRNAs in the nucleus of cancer cells,” Cancer Cell, vol. 18, no. 4, pp. 303–315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. T. P. Chendrimada, R. I. Gregory, E. Kumaraswamy et al., “TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing,” Nature, vol. 436, no. 7051, pp. 740–744, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. H. Großhans and I. Büssing, “MicroRNA biogenesis takes another single hit from microsatellite instability,” Cancer Cell, vol. 18, no. 4, pp. 295–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. S. A. Melo, S. Ropero, C. Moutinho et al., “A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function,” Nature Genetics, vol. 41, no. 3, pp. 365–370, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. M. S. Kumar, R. E. Pester, C. Y. Chen et al., “Dicer1 functions as a haploinsufficient tumor suppressor,” Genes & Development, vol. 23, no. 23, pp. 2700–2704, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. I. Lambertz, D. Nittner, P. Mestdagh et al., “Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo,” Cell Death and Differentiation, vol. 17, no. 4, pp. 633–641, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. Y. Karube, H. Tanaka, H. Osada et al., “Reduced expression of Dicer associated with poor prognosis in lung cancer patients,” Cancer Science, vol. 96, no. 2, pp. 111–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. M. L. Wilbert and G. W. Yeo, “Genome-wide approaches in the study of microRNA biology,” Wiley Interdisciplinary Reviews, vol. 3, no. 5, pp. 491–512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. E. A. Gibb, K. S. S. Enfield, G. L. Stewart et al., “Long non-coding RNAs are expressed in oral mucosa and altered in oral premalignant lesions,” Oral Oncology, vol. 47, no. 11, pp. 1055–1061, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. E. A. Gibb, E. A. Vucic, K. S. S. Enfield et al., “Human cancer long non-coding RNA transcriptomes,” PLoS One, vol. 6, no. 10, Article ID e25915, 2011. View at Google Scholar
  99. E. Meiri, A. Levy, H. Benjamin et al., “Discovery of microRNAs and other small RNAs in solid tumors,” Nucleic Acids Research, vol. 38, no. 18, Article ID gkq376, pp. 6234–6246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Lu, S. S. Tej, S. Luo, C. D. Haudenschild, B. C. Meyers, and P. J. Green, “Genetics: elucidation of the small RNA component of the transcriptome,” Science, vol. 309, no. 5740, pp. 1567–1569, 2005. View at Publisher · View at Google Scholar · View at Scopus
  101. C. Garnis, T. P. H. Buys, and W. L. Lam, “Genetic alteration and gene expression modulation during cancer progression,” Molecular Cancer, vol. 3, article 9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. L. P. Lim, N. C. Lau, E. G. Weinstein et al., “The microRNAs of Caenorhabditis elegans,” Genes & Development, vol. 17, no. 8, pp. 991–1008, 2003. View at Google Scholar
  103. I. L. Hofacker, “Vienna RNA secondary structure server,” Nucleic Acids Research, vol. 31, no. 13, pp. 3429–3431, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. N. C. Lau, L. P. Lim, E. G. Weinstein, and D. P. Bartel, “An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans,” Science, vol. 294, no. 5543, pp. 858–862, 2001. View at Publisher · View at Google Scholar · View at Scopus
  105. M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl, “Identification of novel genes coding for small expressed RNAs,” Science, vol. 294, no. 5543, pp. 853–858, 2001. View at Publisher · View at Google Scholar · View at Scopus
  106. G. Hutvágner, J. McLachlan, A. E. Pasquinelli, É. Bálint, T. Tuschl, and P. D. Zamore, “A cellular function for the RNA-interference enzyme dicer in the maturation of the let -7 small temporal RNA,” Science, vol. 293, no. 5531, pp. 834–838, 2001. View at Publisher · View at Google Scholar · View at Scopus
  107. A. MacHado-Lima, H. A. Del Portillo, and A. M. Durham, “Computational methods in noncoding RNA research,” Journal of Mathematical Biology, vol. 56, no. 1-2, pp. 15–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Gorodkin and I. L. Hofacker, “From structure prediction to genomic screens for novel non-coding RNAs,” PLoS Computational Biology, vol. 7, no. 8, Article ID e1002100, 2011. View at Google Scholar
  109. C. S. Chan, O. Elemento, and S. Tavazoie, “Revealing posttranscriptional regulatory elements through network-level conservation,” PLoS Computational Biology, vol. 1, no. 7, pp. 0564–0578, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Adai, C. Johnson, S. Mlotshwa et al., “Computational prediction of miRNAs in Arabidopsis thaliana,” Genome Research, vol. 15, no. 1, pp. 78–91, 2005. View at Publisher · View at Google Scholar · View at Scopus
  111. X. Xie, J. Lu, E. J. Kulbokas et al., “Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals,” Nature, vol. 434, no. 7031, pp. 338–345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  113. X. Wang and I. M. El Naqa, “Prediction of both conserved and nonconserved microRNA targets in animals,” Bioinformatics, vol. 24, no. 3, pp. 325–332, 2008. View at Publisher · View at Google Scholar · View at Scopus
  114. B. John, A. J. Enright, A. Aravin, T. Tuschl, C. Sander, and D. S. Marks, “Human MicroRNA targets,” PLoS Biology, vol. 2, no. 11, Article ID e363, 2004. View at Google Scholar
  115. U. Lehmann and H. Kreipe, “Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies,” Methods, vol. 25, no. 4, pp. 409–418, 2001. View at Publisher · View at Google Scholar · View at Scopus
  116. K. R. M. Leite, J. M. S. Canavez, S. T. Reis et al., “miRNA analysis of prostate cancer by quantitative real time PCR: comparison between formalin-fixed paraffin embedded and fresh-frozen tissue,” Urologic Oncology, vol. 29, no. 5, pp. 533–537, 2011. View at Publisher · View at Google Scholar · View at Scopus
  117. M. Cronin, M. Pho, D. Dutta et al., “Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues,” American Journal of Pathology, vol. 164, no. 1, pp. 35–42, 2004. View at Google Scholar · View at Scopus
  118. M. Doleshal, A. A. Magotra, B. Choudhury, B. D. Cannon, E. Labourier, and A. E. Szafranska, “Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues,” Journal of Molecular Diagnostics, vol. 10, no. 3, pp. 203–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  119. R. Klopfleisch, A.T. Weiss, and A. D. Gruber, “Excavation of a buried treasure—DNA, mRNA, miRNA and protein analysis in formalin fixed, paraffin embedded tissues,” Histology and Histopathology, vol. 26, no. 6, pp. 797–810, 2011. View at Google Scholar
  120. X. Zhang, J. Chen, T. Radcliffe, D. P. LeBrun, V. A. Tron, and H. Feilotter, “An array-based analysis of microRNA expression comparing matched frozen and formalin-fixed paraffin-embedded human tissue samples,” Journal of Molecular Diagnostics, vol. 10, no. 6, pp. 513–519, 2008. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. Xi, G. Nakajima, E. Gavin et al., “Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples,” RNA, vol. 13, no. 10, pp. 1668–1674, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. B. Hasemeier, M. Christgen, H. Kreipe, and U. Lehmann, “Reliable microRNA profiling in routinely processed formalin-fixed paraffin-embedded breast cancer specimens using fluorescence labelled bead technology,” BMC Biotechnology, vol. 8, article 90, 2008. View at Publisher · View at Google Scholar · View at Scopus
  123. U. Siebolts, H. Vamholt, U. Drebber, H. P. Dienes, C. Wickenhauser, and M. Odenthal, “Tissues from routine pathology archives are suitable for microRNA analyses by quantitative PCR,” Journal of Clinical Pathology, vol. 62, no. 1, pp. 84–88, 2009. View at Publisher · View at Google Scholar · View at Scopus
  124. A. B. Hui, W. Shi, P. C. Boutros et al., “Robust global micro-RNA profiling with formalin-fixed paraffin-embedded breast cancer tissues,” Laboratory Investigation, vol. 89, no. 5, pp. 597–606, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. A. H. Beck, Z. Weng, D. M. Witten et al., “3′-end Sequencing for Expression Quantification (3SEQ) from archival tumor samples,” PLoS One, vol. 5, no. 1, Article ID e8768, 2010. View at Publisher · View at Google Scholar · View at Scopus
  126. R. Hubaux, D. D. Becker-Santos, K. S. S. Enfield, S. Lam, W. L. Lam, and V. D. Martinez, “MicroRNAs as biomarkers for clinical features of lung cancer,” Metabolomics. In press.
  127. X. Chen, Y. Ba, L. Ma et al., “Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases,” Cell Research, vol. 18, no. 10, pp. 997–1006, 2008. View at Publisher · View at Google Scholar · View at Scopus
  128. L. J. Chin and F. J. Slack, “A truth serum for cancer microRNAs have major potential as cancer biomarkers,” Cell Research, vol. 18, no. 10, pp. 983–984, 2008. View at Publisher · View at Google Scholar · View at Scopus
  129. L. Yu, N. W. Todd, L. Xing et al., “Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers,” International Journal of Cancer, vol. 127, no. 12, pp. 2870–2878, 2010. View at Publisher · View at Google Scholar · View at Scopus
  130. X. Tan, W. Qin, L. Zhang et al., “A Five-microRNA signature for squamous cell lung carcinoma (SCC) diagnosis and Hsa-miR-31 for SCC prognosis,” Clinical Cancer Research. In press.
  131. X. Chen, Z. Hu, W. Wang et al., “Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis,” International Journal of Cancer, vol. 7, no. 6, pp. 1620–1628, 2011. View at Publisher · View at Google Scholar · View at Scopus
  132. K. M. Foss, C. Sima, D. Ugolini, M. Neri, K. E. Allen, and G. J. Weiss, “MiR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer,” Journal of Thoracic Oncology, vol. 6, no. 3, pp. 482–488, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. J. Shen, Z. Liu, and N. W. Todd, “Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers,” BMC Cancer, vol. 1, article 374, 2011. View at Google Scholar
  134. M. Seike, A. Goto, T. Okano et al., “MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 29, pp. 12085–12090, 2009. View at Publisher · View at Google Scholar · View at Scopus
  135. M. Tinzl, M. Marberger, S. Horvath, and C. Chypre, “DD3PCA3 RNA analysis in urine—a new perspective for detecting prostate cancer,” European Urology, vol. 46, no. 2, pp. 182–187, 2004. View at Google Scholar
  136. D. Hessels, J. M. T. Klein Gunnewiek, I. Van Oort et al., “DD3PCA3-based molecular urine analysis for the diagnosis of prostate cancer,” European Urology, vol. 44, no. 1, pp. 8–16, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. K. Panzitt, M. M. O. Tschernatsch, C. Guelly et al., “Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA,” Gastroenterology, vol. 132, no. 1, pp. 330–342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  138. M. Saito, A. J. Schetter, S. Mollerup et al., “The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts,” Clinical Cancer Research, vol. 17, no. 7, pp. 1875–1882, 2011. View at Publisher · View at Google Scholar · View at Scopus
  139. H. Ebi, T. Sato, N. Sugito et al., “Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers,” Oncogene, vol. 28, no. 38, pp. 3371–3379, 2009. View at Publisher · View at Google Scholar · View at Scopus
  140. X. Wu, M. G. Piper-Hunter, M. Crawford et al., “MicroRNAs in the pathogenesis of lung cancer,” Journal of Thoracic Oncology, vol. 4, no. 8, pp. 1028–1034, 2009. View at Publisher · View at Google Scholar · View at Scopus
  141. Z. Hu, X. Chen, Y. Zhao et al., “Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer,” Journal of Clinical Oncology, vol. 28, no. 10, pp. 1721–1726, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. Y. Lu, R. Govindan, L. Wang et al., “MicroRNA profiling and prediction of recurrence/relapse-free survival in stage I lung cancer,” Carcinogenesis. In press.
  143. J. F. Wiggins, L. Ruffino, K. Kelnar et al., “Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34,” Cancer Research, vol. 70, no. 14, pp. 5923–5930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  144. Y. Chen, X. Zhu, X. Zhang, B. Liu, and L. Huang, “Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy,” Molecular Therapy, vol. 18, no. 9, pp. 1650–1656, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. Z. Chen, H. Zeng, Y. Guo et al., “MiRNA-145 inhibits non-small cell lung cancer cell proliferation by targeting c-Myc,” Journal of Experimental and Clinical Cancer Research, vol. 29, no. 1, article 151, 2010. View at Publisher · View at Google Scholar · View at Scopus
  146. M. K. Muniyappa, P. Dowling, M. Henry et al., “MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines,” European Journal of Cancer, vol. 45, no. 17, pp. 3104–3118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. L. Galluzzi, E. Morselli, I. Vitale et al., “miR-181a and miR-630 regulate cisplatin-induced cancer cell death,” Cancer Research, vol. 70, no. 5, pp. 1793–1803, 2010. View at Publisher · View at Google Scholar · View at Scopus
  148. W. C. Cho, “MicroRNAs as therapeutic targets for lung cancer,” Zhongguo Fei Ai Za Zhi, vol. 13, no. 12, pp. C58–C60, 2010. View at Google Scholar
  149. A. G. Bader, D. Brown, and M. Winkler, “The promise of microRNA replacement therapy,” Cancer Research, vol. 70, no. 18, pp. 7027–7030, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. S. P. Nana and C. M. Croce, “MicroRNAs as therapeutic targets in cancer,” Translational Research, vol. 157, no. 4, pp. 216–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  151. J. Krützfeldt, N. Rajewsky, R. Braich et al., “Silencing of microRNAs in vivo with ‘antagomirs’,” Nature, vol. 438, no. 7068, pp. 685–689, 2005. View at Publisher · View at Google Scholar · View at Scopus
  152. R. Garzon, G. Marcucci, and C. M. Croce, “Targeting microRNAs in cancer: rationale, strategies and challenges,” Nature Reviews Drug Discovery, vol. 9, no. 10, pp. 775–789, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. J. Elmén, M. Lindow, A. Silahtaroglu et al., “Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver,” Nucleic Acids Research, vol. 36, no. 4, pp. 1153–1162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. S. W. Chi, J. B. Zang, A. Mele, and R. B. Darnell, “Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps,” Nature, vol. 460, no. 7254, pp. 479–486, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. G. Nunnari and M. J. Schnell, “MicroRNA-122: a therapeutic target for hepatitis C virus (HCV) infection,” Frontiers in Bioscience, vol. 3, pp. 1032–1037, 2011. View at Google Scholar
  156. K. L. Thu, R. Chari, W. W. Lockwood, S. Lam, and W. L. Lam, “miR-101 DNA copy loss is a prominent subtype specific event in lung cancer,” Journal of Thoracic Oncology, vol. 6, no. 9, pp. 1594–1598, 2011. View at Google Scholar
  157. J. G. Zhang, J. F. Guo, D. L. Liu, Q. Liu, and J. J. Wang, “MicroRNA-101 exerts tumor-suppressive functions in non-small cell lung cancer through directly targeting enhancer of zeste homolog 2,” Journal of Thoracic Oncology, vol. 6, no. 4, pp. 671–678, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. H. Y. Zou, Q. Li, J. H. Lee et al., “An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms,” Cancer Research, vol. 67, no. 9, pp. 4408–4417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  159. M. S. Ebert, J. R. Neilson, and P. A. Sharp, “MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells,” Nature Methods, vol. 4, no. 9, pp. 721–726, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. J. Wang, X. Liu, H. Wu et al., “CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer,” Nucleic Acids Research, vol. 38, no. 16, pp. 5366–5383, 2010. View at Publisher · View at Google Scholar · View at Scopus
  161. L. Poliseno, L. Salmena, J. Zhang, B. Carver, W. J. Haveman, and P. P. Pandolfi, “A coding-independent function of gene and pseudogene mRNAs regulates tumour biology,” Nature, vol. 465, no. 7301, pp. 1033–1038, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. A. Alimonti, A. Carracedo, J. G. Clohessy et al., “Subtle variations in Pten dose determine cancer susceptibility,” Nature Genetics, vol. 42, no. 5, pp. 454–458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. M. Ghildiyal and P. D. Zamore, “Small silencing RNAs: an expanding universe,” Nature Reviews Genetics, vol. 10, no. 2, pp. 94–108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  164. C. L. Holley and V. K. Topkara, “An introduction to small non-coding RNAs: miRNA and snoRNA,” Cardiovascular Drugs and Therapy, vol. 25, no. 2, pp. 151–159, 2011. View at Publisher · View at Google Scholar · View at Scopus
  165. E. M. Phizicky and A. K. Hopper, “tRNA biology charges to the front,” Genes and Development, vol. 24, no. 17, pp. 1832–1860, 2010. View at Publisher · View at Google Scholar · View at Scopus
  166. K. M. Hannan, R. D. Hannan, and L. I. Rothblum, “Transcription by RNA polymerase I,” Frontiers in Bioscience, vol. 3, pp. d376–d398, 1998. View at Google Scholar · View at Scopus
  167. R. J. Taft, C. D. Kaplan, C. Simons, and J. S. Mattick, “Evolution, biogenesis and function of promoter-associated RNAs,” Cell Cycle, vol. 8, no. 15, pp. 2332–2338, 2009. View at Google Scholar · View at Scopus
  168. P. Scaruffi, “The transcribed-ultraconserved regions: a novel class of long noncoding RNAs involved in cancer susceptibility,” TheScientificWorldJournal, vol. 11, pp. 340–352, 2011. View at Publisher · View at Google Scholar · View at Scopus
  169. I. D'Errico, G. Gadaleta, and C. Saccone, “Pseudogenes in metazoa: origin and features,” Brief Funct Genomic Proteomic, vol. 3, no. 2, pp. 157–167, 2004. View at Google Scholar · View at Scopus
  170. E. G. Wagner and K. Flärdh, “Antisense RNAs everywhere?” Trends in Genetics, vol. 18, no. 5, pp. 223–226, 2002. View at Publisher · View at Google Scholar · View at Scopus
  171. Z. X. Wang, H. B. Bian, J. R. Wang, Z. X. Cheng, K. M. Wang, and W. De, “Prognostic significance of serum miRNA-21 expression in human non-small cell lung cancer,” Journal of Surgical Oncology, vol. 104, no. 7, pp. 847–851, 2011. View at Publisher · View at Google Scholar · View at Scopus
  172. H. Kanzaki, S. Ito, H. Hanafusa et al., “Identification of direct targets for the miR-17-92 cluster by proteomic analysis,” Proteomics, vol. 11, no. 17, pp. 3531–3539, 2011. View at Publisher · View at Google Scholar · View at Scopus
  173. J. Beane, J. Vick, F. Schembri et al., “Characterizing the impact of smoking and lung cancer on the airway transcriptome using RNA-Seq,” Cancer Prevention Research, vol. 4, no. 6, pp. 803–817, 2011. View at Publisher · View at Google Scholar · View at Scopus
  174. J. G. Zhang, J. J. Wang, F. Zhao, Q. Liu, K. Jiang, and G. H. Yang, “MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC),” Clinica Chimica Acta, vol. 411, no. 11-12, pp. 846–852, 2010. View at Google Scholar · View at Scopus
  175. Y. Sun, Y. Bai, F. Zhang, Y. Wang, Y. Guo, and L. Guo, “miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7,” Biochemical and Biophysical Research Communications, vol. 391, no. 3, pp. 1483–1489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  176. M. Kohda, H. Hoshiya, M. Katoh et al., “Frequent loss of imprinting of IGF2 and MEST in lung adenocarcinoma,” Molecular Carcinogenesis, vol. 31, no. 4, pp. 184–191, 2001. View at Publisher · View at Google Scholar · View at Scopus
  177. M. Zuker and P. Stiegler, “Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information,” Nucleic Acids Research, vol. 9, no. 1, pp. 133–148, 1981. View at Publisher · View at Google Scholar · View at Scopus
  178. E. Rivas and S. R. Eddy, “A dynamic programming algorithm for RNA structure prediction including pseudoknots,” Journal of Molecular Biology, vol. 285, no. 5, pp. 2053–2068, 1999. View at Publisher · View at Google Scholar · View at Scopus
  179. J. Reeder and R. Giegerich, “Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics,” BMC Bioinformatics, vol. 5, article 104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  180. A. Sczyrba, J. Krüger, H. Mersch, S. Kurtz, and R. Giegerich, “RNA-related tools on the Bielefeld Bioinformatics Server,” Nucleic Acids Research, vol. 31, no. 13, pp. 3767–3770, 2003. View at Publisher · View at Google Scholar · View at Scopus
  181. E. P. Nawrocki, D. L. Kolbe, and S. R. Eddy, “Infernal 1.0: inference of RNA alignments,” Bioinformatics, vol. 25, no. 10, pp. 1335–1337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  182. S. Washietl, I. L. Hofacker, and P. F. Stadler, “Fast and reliable prediction of noncoding RNAs,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 7, pp. 2454–2459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  183. E. Rivas and S. R. Eddy, “Noncoding RNA gene detection using comparative sequence analysis,” BMC Bioinformatics, vol. 2, article 8, 2001. View at Publisher · View at Google Scholar · View at Scopus
  184. J. S. Pedersen, G. Bejerano, A. Siepel et al., “Identification and classification of conserved RNA secondary structures in the human genome,” PLoS Computational Biology, vol. 2, no. 4, article e33, 2006. View at Publisher · View at Google Scholar · View at Scopus
  185. A. O. Harmanci, G. Sharma, and D. H. Mathews, “Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign,” BMC Bioinformatics, vol. 8, article 130, 2007. View at Publisher · View at Google Scholar · View at Scopus
  186. J. Gorodkin, L. J. Heyer, and G. D. Stormo, “Finding the most significant common sequence and structure motifs in a set of RNA sequences,” Nucleic Acids Research, vol. 25, no. 18, pp. 3724–3732, 1997. View at Publisher · View at Google Scholar · View at Scopus
  187. Z. Yao, Z. Weinberg, and W. L. Ruzzo, “CMfinder—a covariance model based RNA motif finding algorithm,” Bioinformatics, vol. 22, no. 4, pp. 445–452, 2006. View at Publisher · View at Google Scholar · View at Scopus