Table of Contents Author Guidelines Submit a Manuscript
Genetics Research International
Volume 2014 (2014), Article ID 516508, 8 pages
http://dx.doi.org/10.1155/2014/516508
Review Article

Complexity of Gene Expression Evolution after Duplication: Protein Dosage Rebalancing

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA

Received 26 March 2014; Accepted 3 August 2014; Published 17 August 2014

Academic Editor: Eugenia Poliakov

Copyright © 2014 Igor B. Rogozin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. Hughes, “The evolution of functionally novel proteins after gene duplication,” Proceedings of the Royal Society B Biological Sciences, vol. 256, no. 1346, pp. 119–124, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Force, M. Lynch, F. B. Pickett, A. Amores, Y. Yan, and J. Postlethwait, “Preservation of duplicate genes by complementary, degenerative mutations,” Genetics, vol. 151, no. 4, pp. 1531–1545, 1999. View at Google Scholar · View at Scopus
  3. F. A. Kondrashov, I. B. Rogozin, Y. I. Wolf, and E. V. Koonin, “Selection in the evolution of gene duplications,” Genome Biology, vol. 3, no. 2, 2002. View at Google Scholar · View at Scopus
  4. E. V. Koonin, “Orthologs, paralogs, and evolutionary genomics,” Annual Review of Genetics, vol. 39, pp. 309–338, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. G. C. Conant and K. H. Wolfe, “Turning a hobby into a job: How duplicated genes find new functions,” Nature Reviews Genetics, vol. 9, no. 12, pp. 938–950, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Innan and F. Kondrashov, “The evolution of gene duplications: classifying and distinguishing between models,” Nature Reviews Genetics, vol. 11, no. 2, pp. 97–108, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. F. A. Kondrashov, “Gene duplication as a mechanism of genomic adaptation to a changing environment,” Proceedings of the Royal Society B Biological Sciences, vol. 279, no. 1749, pp. 5048–5057, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Zhang, “Gene duplication,” in Princeton Guide to Evolution, J. Losos, Ed., pp. 397–405, Princeton University Press, Princeton, NJ, USA, 2013. View at Google Scholar
  9. S. Ohno, Evolution by Gene Duplication, Springer, Berlin, Germany, 1970.
  10. M. Kimura and J. L. King, “Fixation of a deleterious allele at one of two “duplicate” loci by mutation pressure and random drift,” Proceedings of the National Academy of Sciences of the United States of America, vol. 76, no. 6, pp. 2858–2861, 1979. View at Google Scholar · View at Scopus
  11. M. Lynch and A. Force, “The probability of duplicate gene preservation by subfunctionalization,” Genetics, vol. 154, no. 1, pp. 459–473, 2000. View at Google Scholar · View at Scopus
  12. M. Lynch and J. S. Conery, “The evolutionary fate and consequences of duplicate genes,” Science, vol. 290, no. 5494, pp. 1151–1155, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Lynch, “Genomics: gene duplication and evolution,” Science, vol. 297, no. 5583, pp. 945–947, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Stoltzfus, “On the possibility of constructive neutral evolution,” Journal of Molecular Evolution, vol. 49, no. 2, pp. 169–181, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. J. B. Walsh, “How often do duplicated genes evolve new functions?” Genetics, vol. 139, no. 1, pp. 421–428, 1995. View at Google Scholar · View at Scopus
  16. W. H. Li, “Rate of gene silencing at duplicate loci. A theoretical study and interpretation of data from tetraploid fishes,” Genetics, vol. 95, no. 1, pp. 237–258, 1980. View at Google Scholar · View at Scopus
  17. M. K. Hughes and A. L. Hughes, “Evolution of duplicate genes in a tetraploid animal, Xenopus laevis,” Molecular Biology and Evolution, vol. 10, no. 6, pp. 1360–1369, 1993. View at Google Scholar · View at Scopus
  18. M. Lynch and V. Katju, “The altered evolutionary trajectories of gene duplicates,” Trends in Genetics, vol. 20, no. 11, pp. 544–549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. B. E. Stranger, M. S. Forrest, M. Dunning et al., “Relative impact of nucleotide and copy number variation on gene phenotypes,” Science, vol. 315, no. 5813, pp. 848–853, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Schuster-Böckler, D. Conrad, and A. Bateman, “Dosage sensitivity shapes the evolution of copy-number varied regions,” PLoS ONE, vol. 5, no. 3, Article ID e9474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Zhou, B. Lemos, E. B. Dopman, and D. L. Hartl, “Copy-number variation: the balance between gene dosage and expression in Drosophila melanogaster,” Genome Biology and Evolution, vol. 3, no. 1, pp. 1014–1024, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. A. J. De Smith, R. G. Walters, P. Froguel, and A. I. Blakemore, “Human genes involved in copy number variation: mechanisms of origin, functional effects and implications for disease,” Cytogenetic and Genome Research, vol. 123, no. 1–4, pp. 17–26, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. N. Henrichsen, E. Chaignat, and A. Reymond, “Copy number variants, diseases and gene expression,” Human Molecular Genetics, vol. 18, no. 1, pp. R1–R8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. W. Hahn, “Distinguishing among evolutionary models for the maintenance of gene duplicates,” Journal of Heredity, vol. 100, no. 5, pp. 605–617, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. R. A. Studer and M. Robinson-Rechavi, “How confident can we be that orthologs are similar, but paralogs differ?” Trends in Genetics, vol. 25, no. 5, pp. 210–216, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. N. L. Nehrt, W. T. Clark, P. Radivojac, and M. W. Hahn, “Testing the ortholog conjecture with comparative functional genomic data from mammals,” PLoS Computational Biology, vol. 7, no. 6, Article ID e1002073, 10 pages, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  27. T. Gabaldón and E. V. Koonin, “Functional and evolutionary implications of gene orthology,” Nature Reviews Genetics, vol. 14, no. 5, pp. 360–366, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Ashburner, C. A. Ball, J. A. Blake et al., “Gene ontology: Tool for the unification of biology,” Nature Genetics, vol. 25, no. 1, pp. 25–29, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. A. I. Su, T. Wiltshire, S. Batalov et al., “A gene atlas of the mouse and human protein-encoding transcriptomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 16, pp. 6062–6067, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. P. D. Thomas, V. Wood, C. J. Mungall, S. E. Lewis, and J. A. Blake, “On the use of gene ontology annotations to assess functional similarity among orthologs and paralogs: a short report,” PLoS Computational Biology, vol. 8, no. 2, Article ID e1002386, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. A. M. Altenhoff, R. A. Studer, M. Robinson-Rechavi, and C. Dessimoz, “Resolving the ortholog conjecture: orthologs tend to be weakly, but significantly, more similar in function than paralogs,” PLoS Computational Biology, vol. 8, no. 5, Article ID e1002514, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Chen and J. Zhang, “The ortholog conjecture is untestable by the current gene ontology but is supported by RNA sequencing data,” PLoS Computational Biology, vol. 8, no. 11, Article ID e1002784, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  33. A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold, “Mapping and quantifying mammalian transcriptomes by RNA-Seq,” Nature Methods, vol. 5, no. 7, pp. 621–628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. I. B. Rogozin, D. Managadze, S. A. Shabalina, and E. V. Koonin, “Gene family level comparative analysis of gene expression in mammals validates the ortholog conjecture,” Genome Biology and Evolution, vol. 6, no. 4, pp. 754–762, 2014. View at Google Scholar
  35. S. Freilich, T. Massingham, E. Blanc, L. Goldovsky, and J. M. Thornton, “Relating tissue specialization to the differentiation of expression of singleton and duplicate mouse proteins,” Genome Biology, vol. 7, no. 10, article R89, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. L. Huminiecki and K. H. Wolfe, “Divergence of spatial gene expression profiles following species-specific gene duplications in human and mouse,” Genome Research, vol. 14, no. 10 A, pp. 1870–1879, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J. K. Colbourne, M. E. Pfrender, D. Gilbert et al., “The ecoresponsive genome of Daphnia pulex,” Science, vol. 331, no. 6017, pp. 555–561, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. K. D. Makova and W. Li, “Divergence in the spatial pattern of gene expression between human duplicate genes,” Genome Research, vol. 13, no. 7, pp. 1638–1645, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Papp, C. Pál, and L. D. Hurst, “Dosage sensitivity and the evolution of gene families in yeast,” Nature, vol. 424, no. 6945, pp. 194–197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. E. W. Ganko, B. C. Meyers, and T. J. Vision, “Divergence in expression between duplicated genes in Arabidopsis,” Molecular Biology and Evolution, vol. 24, no. 10, pp. 2298–2309, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. W. Qian, B. Liao, A. Y. Chang, and J. Zhang, “Maintenance of duplicate genes and their functional redundancy by reduced expression,” Trends in Genetics, vol. 26, no. 10, pp. 425–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Huerta-Cepas, J. Dopazo, M. A. Huynen, and T. Gabaldón, “Evidence for short-time divergence and long-time conservation of tissue-specific expression after gene duplication,” Briefings in Bioinformatics, vol. 12, no. 5, pp. 442–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Liu, G. J. Baute, and K. L. Adams, “Organ and cell type-specific complementary expression patterns and regulatory neofunctionalization between duplicated genes in Arabidopsis thaliana,” Genome Biology and Evolution, vol. 3, no. 1, pp. 1419–1436, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Pegueroles, S. Laurie, and M. M. Alba, “Accelerated evolution after gene duplication: a time-dependent process affecting just one copy,” Molecular Biology and Evolution, vol. 30, no. 8, pp. 1830–1842, 2013. View at Google Scholar
  45. Z. Gu, D. Nicolae, H. H. Lu, and W. H. Li, “Rapid divergence in expression between duplicate genes inferred from microarray data,” Trends in Genetics, vol. 18, no. 12, pp. 609–613, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. T. H. Oakley, B. Østman, and A. C. V. Wilson, “Repression and loss of gene expression outpaces activation and gain in recently duplicated fly genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 31, pp. 11637–11641, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Stankiewicz and J. R. Lupski, “Structural variation in the human genome and its role in disease,” Annual Review of Medicine, vol. 61, pp. 437–455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. J. M. Kidd, G. M. Cooper, W. F. Donahue et al., “Mapping and sequencing of structural variation from eight human genomes,” Nature, vol. 453, no. 7191, pp. 56–64, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Alkan, B. P. Coe, and E. E. Eichler, “Genome structural variation discovery and genotyping,” Nature Reviews Genetics, vol. 12, no. 5, pp. 363–376, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Craddock, M. E. Hurles, N. Cardin et al., “Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls,” Nature, vol. 464, no. 7289, pp. 713–720, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Pinto, E. Delaby, D. Merico et al., “Convergence of genes and cellular pathways dysregulated in autism spectrum disorders,” The American Journal of Human Genetics, vol. 94, no. 5, pp. 677–694, 2014. View at Publisher · View at Google Scholar
  52. E. Poliakov, E. V. Koonin, and I. B. Rogozin, “Impairment of translation in neurons as a putative causative factor for autism,” Biology Direct, vol. 9, no. 1, p. 16, 2014. View at Publisher · View at Google Scholar
  53. A. DeLuna, M. Springer, M. W. Kirschner, and R. Kishony, “Need-based up-regulation of protein levels in response to deletion of their duplicate genes,” PLoS Biology, vol. 8, no. 3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. A. G. Clark, “Invasion and maintenance of a gene duplication,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 8, pp. 2950–2954, 1994. View at Google Scholar · View at Scopus
  55. A. K. Holloway, T. Palzkill, and J. J. Bull, “Experimental evolution of gene duplicates in a bacterial plasmid model,” Journal of Molecular Evolution, vol. 64, no. 2, pp. 215–222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. J. A. Birchler and R. A. Veitia, “The gene balance hypothesis: from classical genetics to modern genomics,” Plant Cell, vol. 19, no. 2, pp. 395–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. R. A. Veitia and J. A. Birchler, “Dominance and gene dosage balance in health and disease: why levels matter!,” Journal of Pathology, vol. 220, no. 2, pp. 174–185, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Nei, “The new mutation theory of phenotypic evolution,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 30, pp. 12235–12242, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Saccone, C. Caggese, A. M. D'Erchia, C. Lanave, M. Oliva, and G. Pesole, “Molecular clock and gene function,” Journal of Molecular Evolution, vol. 57, supplement 1, pp. S277–S285, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Pan and L. Zhang, “Quantifying the major mechanisms of recent gene duplications in the human and mouse genomes: a novel strategy to estimate gene duplication rates,” Genome Biology, vol. 8, no. 8, article R158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Škunca, M. Bošnjak, A. Kriško et al., “Phyletic profiling with cliques of orthologs is enhanced by signatures of paralogy relationships,” PLoS Computational Biology, vol. 9, no. 1, Article ID e1002852, 2013. View at Publisher · View at Google Scholar · View at Scopus