Table of Contents Author Guidelines Submit a Manuscript
Genetics Research International
Volume 2014 (2014), Article ID 646193, 8 pages
http://dx.doi.org/10.1155/2014/646193
Research Article

Generalized Portrait of Cancer Metabolic Pathways Inferred from a List of Genes Overexpressed in Cancer

1Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
2National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA

Received 20 May 2014; Accepted 15 August 2014; Published 27 August 2014

Academic Editor: Elena Stepchenkova

Copyright © 2014 Eugenia Poliakov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. O. Warburg, “On the origin of cancer cells,” Science, vol. 123, no. 3191, pp. 309–314, 1956. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Warburg, F. Wind, and E. Negelein, “The metabolism of tumors in the body,” The Journal of General Physiology, vol. 8, no. 6, pp. 519–530, 1927. View at Publisher · View at Google Scholar
  3. L. Jiang and R. J. Deberardinis, “Cancer metabolism: when more is less,” Nature, vol. 489, no. 7417, pp. 511–512, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Tasselli and K. F. Chua, “Cancer: metabolism in 'the driver's seat,” Nature, vol. 492, no. 7429, pp. 362–363, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. M. G. V. Heiden, L. C. Cantley, and C. B. Thompson, “Understanding the warburg effect: the metabolic requirements of cell proliferation,” Science, vol. 324, no. 5930, pp. 1029–1033, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Kowalski, D. Nocon, A. Gamian, J. Kolodziej, and D. Rakus, “Association of C-terminal region of phosphoglycerate mutase with glycolytic complex regulates energy production in cancer cells,” Journal of Cellular Physiology, vol. 227, no. 6, pp. 2613–2621, 2012. View at Publisher · View at Google Scholar · View at Scopus
  7. M. G. V. Heiden, J. W. Locasale, K. D. Swanson et al., “Evidence for an alternative glycolytic pathway in rapidly proliferating cells,” Science, vol. 329, no. 5998, pp. 1492–1499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. G. H. Chun and R. J. Shaw, “Cancer metabolism in breadth and depth,” Nature Biotechnology, vol. 31, no. 6, pp. 505–507, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Hu, J. W. Locasale, J. H. Bielas et al., “Heterogeneity of tumor-induced gene expression changes in the human metabolic network,” Nature Biotechnology, vol. 31, no. 6, pp. 522–529, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Son, C. A. Lyssiotis, H. Ying et al., “Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway,” Nature, vol. 496, no. 7443, pp. 101–105, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Jain, R. Nilsson, S. Sharma et al., “Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation,” Science, vol. 336, no. 6084, pp. 1040–1044, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Santarius, J. Shipley, D. Brewer, M. R. Stratton, and C. S. Cooper, “A census of amplified and overexpressed human cancer genes,” Nature Reviews Cancer, vol. 10, no. 1, pp. 59–64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Wang, “Understanding genomic alterations in cancer genomes using an integrative network approach,” Cancer Letters, vol. 340, no. 2, pp. 261–269, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Wang, N. Zaman, S. McGee, J. S. Milanese, A. Masoudi-Nejad, and M. O'Connor-McCourt, “Predictive genomics: a cancer hallmark network framework for predicting tumor clinical phenotypes using genome sequencing data,” Seminars in Cancer Biology, 2014. View at Publisher · View at Google Scholar
  15. K. R. Kampen, “Membrane proteins: the key players of a cancer cell,” Journal of Membrane Biology, vol. 242, no. 2, pp. 69–74, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Aouacheria, V. Navratil, A. Barthelaix, D. Mouchiroud, and C. Gautier, “Bioinformatic screening of human ESTs for differentially expressed genes in normal and tumor tissues,” BMC Genomics, vol. 7, article 94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Kanehisa, S. Goto, Y. Sato, M. Kawashima, M. Furumichi, and M. Tanabe, “Data, information, knowledge and principle: back to metabolism in KEGG,” Nucleic Acids Research, vol. 42, Database issue, pp. D199–D205, 2014. View at Google Scholar
  18. N. Kondoh, M. Shuda, K. Tanaka, T. Wakatsuki, A. Hada, and M. Yamamoto, “Enhanced expression of S8, L12, L23a, L27 and L30 ribosomal protein mRNAs in human hepatocellular carcinoma,” Anticancer Research, vol. 21, no. 4, pp. 2429–2433, 2001. View at Google Scholar · View at Scopus
  19. M. Stoneley and A. E. Willis, “Aberrant regulation of translation initiation in tumorigenesis,” Current Molecular Medicine, vol. 3, no. 7, pp. 597–603, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. M. J. Clemens, “Targets and mechanisms for the regulation of translation in malignant transformation,” Oncogene, vol. 23, no. 18, pp. 3180–3188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Lai and J. Xu, “Ribosomal proteins and colorectal cancer,” Current Genomics, vol. 8, no. 1, pp. 43–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. H. R. Christofk, M. G. Vander Heiden, M. H. Harris et al., “The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth,” Nature, vol. 452, no. 7184, pp. 230–233, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Mazurek, C. B. Boschek, F. Hugo, and E. Eigenbrodt, “Pyruvate kinase type M2 and its role in tumor growth and spreading,” Seminars in Cancer Biology, vol. 15, no. 4, pp. 300–308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Frezza, L. Zheng, D. A. Tennant et al., “Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival,” PLoS ONE, vol. 6, no. 9, Article ID e24411, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Sonveaux, F. Végran, T. Schroeder et al., “Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice,” Journal of Clinical Investigation, vol. 118, no. 12, pp. 3930–3942, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. O. Feron, “Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells,” Radiotherapy and Oncology, vol. 92, no. 3, pp. 329–333, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. J. Nelson, J. Kurhanewicz, D. B. Vigneron et al., “Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate,” Science Translational Medicine, vol. 5, no. 198, Article ID 198ra108, 2013. View at Publisher · View at Google Scholar
  28. M. L. McCleland, A. S. Adler, Y. Shang et al., “An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer,” Cancer Research, vol. 72, no. 22, pp. 5812–5823, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. S. A. Marchitti, D. J. Orlicky, C. Brocker, and V. Vasiliou, “Aldehyde dehydrogenase 3B1 (ALDH3B1): immunohistochemical tissue distribution and cellular-specific localization in normal and cancerous human tissues,” Journal of Histochemistry & Cytochemistry, vol. 58, no. 9, pp. 765–783, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Matsunaga, A. Hojo, Y. Yamane, S. Endo, O. El-Kabbani, and A. Hara, “Pathophysiological roles of aldo-keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers,” Chemico-Biological Interactions, vol. 202, no. 1–3, pp. 234–242, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Shafqat, J. Shafqat, G. Eissner et al., “Hep27, a member of the short-chain dehydrogenase/reductase family, is an NADPH-dependent dicarbonyl reductase expressed in vascular endothelial tissue,” Cellular and Molecular Life Sciences, vol. 63, no. 10, pp. 1205–1213, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Liu, D. Huang, D. L. McArthur, L. G. Boros, N. Nissen, and A. P. Heaney, “Fructose induces transketolase flux to promote pancreatic cancer growth,” Cancer Research, vol. 70, no. 15, pp. 6368–6376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. A. M. Port, M. R. Ruth, and N. W. Istfan, “Fructose consumption and cancer: is there a connection?” Current Opinion in Endocrinology, Diabetes and Obesity, vol. 19, no. 5, pp. 367–374, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. B. E. Baysal, R. E. Ferrell, J. E. Willett-Brozick et al., “Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma,” Science, vol. 287, no. 5454, pp. 848–851, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Schulze and A. L. Harris, “How cancer metabolism is tuned for proliferation and vulnerable to disruption,” Nature, vol. 491, no. 7424, pp. 364–373, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Raimundo, B. E. Baysal, and G. S. Shadel, “Revisiting the TCA cycle: signaling to tumor formation,” Trends in Molecular Medicine, vol. 17, no. 11, pp. 641–649, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. R. J. DeBerardinis, A. Mancuso, E. Daikhin et al., “Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 49, pp. 19345–19350, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Hassanein, M. D. Hoeksema, M. Shiota et al., “SLC1A5 mediates glutamine transport required for lung cancer cell growth and survival,” Clinical Cancer Research, vol. 19, no. 3, pp. 560–570, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. P. M. C. Smith and C. A. Atkins, “Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation,” Plant Physiology, vol. 128, no. 3, pp. 793–802, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. A. C. Racanelli, S. B. Rothbart, C. L. Heyer, and R. G. Moran, “Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition,” Cancer Research, vol. 69, no. 13, pp. 5467–5474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. I. B. Spurr, C. N. Birts, F. Cuda, S. J. Benkovic, J. P. Blaydes, and A. Tavassoli, “Targeting tumour proliferation with a small-molecule inhibitor of AICAR transformylase homodimerization,” ChemBioChem, vol. 13, no. 11, pp. 1628–1634, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. I. Pavlov, P. V. Shcherbakova, and I. B. Rogozin, “Roles of DNA polymerases in replication, repair, and recombination in eukaryotes,” International Review of Cytology, vol. 255, pp. 41–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. U. V. Roongta, J. G. Pabalan, X. Wang et al., “Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy,” Molecular Cancer Research, vol. 9, no. 11, pp. 1551–1561, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Mason, B. Liang, L. Li et al., “SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids,” PLoS ONE, vol. 7, no. 3, Article ID e33823, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. R. A. Igal, “Stearoyl-coa desaturase-1: a novel key player in the mechanisms of cell proliferation, programmed cell death and transformation to cancer,” Carcinogenesis, vol. 31, no. 9, pp. 1509–1515, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Gupta, P. Kessler, J. Rawwas, and B. R. G. Williams, “Regulation of CRABP-II expression by MycN in Wilms tumor,” Experimental Cell Research, vol. 314, no. 20, pp. 3663–3668, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Zhao, M. Takahashi, J. Gu et al., “Functional roles of N-glycans in cell signaling and cell adhesion in cancer,” Cancer Science, vol. 99, no. 7, pp. 1304–1310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  48. K. S. Lau and J. W. Dennis, “N-Glycans in cancer progression,” Glycobiology, vol. 18, no. 10, pp. 750–760, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. B. Blomme, F. Heindryckx, J. M. Stassen, A. Geerts, I. Colle, and H. Van Vlierberghe, “Serum protein N-glycan alterations of diethylnitrosamine-induced hepatocellular carcinoma mice and their evolution after inhibition of the placental growth factor,” Molecular and Cellular Biochemistry, vol. 372, no. 1-2, pp. 199–210, 2013. View at Publisher · View at Google Scholar · View at Scopus
  50. M. V. Trivedi, J. S. Laurence, and T. J. Siahaan, “The role of thiols and disulfides on protein stability,” Current Protein and Peptide Science, vol. 10, no. 6, pp. 614–625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. E. Chevet, D. Fessart, F. Delom et al., “Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development,” Oncogene, vol. 32, no. 20, pp. 2499–2509, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. T. A. Gray, N. J. MacLaine, C. O. Michie et al., “Anterior Gradient-3: a novel biomarker for ovarian cancer that mediates cisplatin resistance in xenograft models,” Journal of Immunological Methods, vol. 378, no. 1-2, pp. 20–32, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Ilani, A. Alon, I. Grossman et al., “A secreted disulfide catalyst controls extracellular matrix composition and function,” Science, vol. 341, no. 6141, pp. 74–76, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. J. M. Pare, P. LaPointe, and T. C. Hobman, “Hsp90 cochaperones p23 and FKBP4 physically interact with hAgo2 and activate RNA interference-mediated silencing in mammalian cells,” Molecular Biology of the Cell, vol. 24, no. 15, pp. 2303–2310, 2013. View at Publisher · View at Google Scholar · View at Scopus
  55. N. J. Martinez, H. M. Chang, R. Borrajo Jde, and R. I. Gregory, “The co-chaperones Fkbp4/5 control Argonaute2 expression and facilitate RISC assembly,” RNA, vol. 19, pp. 1583–1593, 2013. View at Google Scholar
  56. P. Khatri, M. Sirota, and A. J. Butte, “Ten years of pathway analysis: current approaches and outstanding challenges,” PLoS Computational Biology, vol. 8, no. 2, Article ID e1002375, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. P. A. Futreal, L. Coin, M. Marshall et al., “A census of human cancer genes,” Nature Reviews Cancer, vol. 4, no. 3, pp. 177–183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. V. N. Babenko, M. K. Basu, F. A. Kondrashov, I. B. Rogozin, and E. V. Koonin, “Signs of positive selection of somatic mutations in human cancers detected by EST sequence analysis,” BMC Cancer, vol. 6, article 36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. I. P. Gorlov, C. J. Logothetis, S. Fang, O. Y. Gorlova, and C. Amos, “Building a statistical model for predicting cancer genes,” PLoS ONE, vol. 7, no. 11, Article ID e49175, 2012. View at Publisher · View at Google Scholar · View at Scopus