Table of Contents
Hepatitis Research and Treatment
Volume 2010, Article ID 901216, 9 pages
http://dx.doi.org/10.1155/2010/901216
Review Article

Can Engineered “Designer” T Cells Outsmart Chronic Hepatitis B?

1Institut für Virologie, Technische Universität München/Helmholtz Zentrum München, 81675 München, Germany
2Zentrum für Molekulare Medizin Köln und Klinik I für Innere Medizin Köln, Universität zu Köln, Robert-Koch-Str. 21, 50931 Köln, Germany

Received 27 May 2010; Revised 14 July 2010; Accepted 15 July 2010

Academic Editor: Alfred M. Prince

Copyright © 2010 U. Protzer and H. Abken. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Levrero, T. Pollicino, J. Petersen, L. Belloni, G. Raimondo, and M. Dandri, “Control of cccDNA function in hepatitis B virus infection,” Journal of Hepatology, vol. 51, no. 3, pp. 581–592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Ganem and A. M. Prince, “Hepatitis B virus infection—natural history and clinical consequences,” The New England Journal of Medicine, vol. 350, no. 11, pp. 1118–1129, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. A. S. F. Lok and B. J. McMahon, “Chronic hepatitis B,” Hepatology, vol. 45, no. 2, pp. 507–539, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Cornberg, U. Protzer, M. M. Dollinger et al., “The German guideline for the management of hepatitis B virus infection: short version,” Journal of Viral Hepatitis, vol. 15, no. 1, pp. 1–21, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C.-J. Chen, H.-I. Yang, J. Su et al., “Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA Level,” Journal of the American Medical Association, vol. 295, no. 1, pp. 65–73, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. G. Gish, T.-T. Chang, C.-L. Lai et al., “Loss of HBsAg antigen during treatment with entecavir or lamivudine in nucleoside-naïve HBeAg-positive patients with chronic hepatitis B,” Journal of Viral Hepatitis, vol. 17, no. 1, pp. 16–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Protzer and H. Schaller, “Immune escape by hepatitis B viruses,” Virus Genes, vol. 21, no. 1-2, pp. 27–37, 2000. View at Google Scholar · View at Scopus
  8. S. F. Wieland, H. C. Spangenberg, R. Thimme, R. H. Purcell, and F. V. Chisari, “Expansion and contraction of the hepatitis B virus transcriptional template in infected chimpanzees,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 7, pp. 2129–2134, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. W. R. Addison, K.-A. Walters, W. W. S. Wong et al., “Half-life of the duck hepatitis B virus covalently closed circular DNA pool in vivo following inhibition of viral replication,” The Journal of Virology, vol. 76, no. 12, pp. 6356–6363, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Werle-Lapostolle, S. Bowden, S. Locarnini et al., “Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy,” Gastroenterology, vol. 126, no. 7, pp. 1750–1758, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Wursthorn, M. Lutgehetmann, M. Dandri et al., “Peginterferon alpha-2b plus adefovir induce strong cccDNA decline and HBsAg reduction in patients with chronic hepatitis B,” Hepatology, vol. 44, no. 3, pp. 675–684, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. S. Lok, “Navigating the maze of hepatitis B treatments,” Gastroenterology, vol. 132, no. 4, pp. 1586–1594, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. F. van Bömmel, R. A. de Man, H. Wedemeyer et al., “Long-term efficacy of tenofovir monotherapy for hepatitis B virus-monoinfected patients after failure of nucleoside/nucleotide analogues,” Hepatology, vol. 51, no. 1, pp. 73–80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. D.-S. Chen, “Hepatitis B vaccination: the key towards elimination and eradication of hepatitis B,” Journal of Hepatology, vol. 50, no. 4, pp. 805–816, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Protzer-Knolle, U. Naumann, R. Bartenschlager et al., “Hepatitis B virus with antigenically altered hepatitis B surface antigen is selected by high-dose hepatitis B immune globulin after liver transplantation,” Hepatology, vol. 27, no. 1, pp. 254–263, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. W. F. Carman, A. R. Zanetti, P. Karayiannis et al., “Vaccine-induced escape mutant of hepatitis B virus,” The Lancet, vol. 336, no. 8711, pp. 325–329, 1990. View at Google Scholar · View at Scopus
  17. A. Bertoletti, C. Ferrari, F. Fiaccadori et al., “HLA class I-restricted human cytotoxic T cells recognize endogenously synthesized hepatitis B virus nucleocapsid antigen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 23, pp. 10445–10449, 1991. View at Google Scholar · View at Scopus
  18. B. Rehermann, P. Fowler, J. Sidney et al., “The cytotoxic T lymphocyte response to multiple hepatitis B virus polymerase epitopes during and after acute viral hepatitis,” The Journal of Experimental Medicine, vol. 181, no. 3, pp. 1047–1058, 1995. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Penna, M. Artini, A. Cavalli et al., “Long-lasting memory T cell responses following self-limited acute hepatitis B,” The Journal of Clinical Investigation, vol. 98, no. 5, pp. 1185–1194, 1996. View at Google Scholar · View at Scopus
  20. A. Penna, F. V. Chisari, A. Bertoletti et al., “Cytotoxic T lymphocytes recognize an HLA-A2-restricted epitope within the hepatitis B virus nucleocapsid antigen,” The Journal of Experimental Medicine, vol. 174, no. 6, pp. 1565–1570, 1991. View at Google Scholar · View at Scopus
  21. F. V. Chisari and C. Ferrari, “Hepatitis B virus immunopathology,” Springer Seminars in Immunopathology, vol. 17, no. 2-3, pp. 261–281, 1995. View at Google Scholar · View at Scopus
  22. C.-K. Hui, A. Lie, W.-Y. Au et al., “A long-term follow-up study on hepatitis B surface antigen-positive patients undergoing allogeneic hematopoietic stem cell transplantation,” Blood, vol. 106, no. 2, pp. 464–469, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. R. A. Morgan, M. E. Dudley, J. R. Wunderlich et al., “Cancer regression in patients after transfer of genetically engineered lymphocytes,” Science, vol. 314, no. 5796, pp. 126–129, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. C. H. Lamers, S. Sleijfer, A. G. Vulto et al., “Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience,” Journal of Clinical Oncology, vol. 24, no. 13, pp. e20–e22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. B. G. Till, M. C. Jensen, J. Wang et al., “Adoptive immunotherapy for indolent non-hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells,” Blood, vol. 112, no. 6, pp. 2261–2271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. H. Kershaw, J. A. Westwood, L. L. Parker et al., “A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer,” Clinical Cancer Research, vol. 12, no. 20, pp. 6106–6115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Gattinoni, D. J. Powell Jr., S. A. Rosenberg, and N. P. Restifo, “Adoptive immunotherapy for cancer: building on success,” Nature Reviews Immunology, vol. 6, no. 5, pp. 383–393, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. R. E. Hawkins, D. E. Gilham, R. Debets et al., “Development of adoptive cell therapy for cancer: a clinical perspective,” Human Gene Therapy, vol. 21, no. 9, pp. 1039–1042, 2010. View at Google Scholar
  29. A. Bertoletti and A. Gehring, “Therapeutic vaccination and novel strategies to treat chronic HBV infection,” Expert Review of Gastroenterology and Hepatology, vol. 3, no. 5, pp. 561–569, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Eshhar, “The T-body approach: redirecting T cells with antibody specificity,” Handbook of Experimental Pharmacology, no. 181, pp. 329–342, 2008. View at Google Scholar · View at Scopus
  31. G. M. Bendle, C. Linnemann, A. I. Hooijkaas et al., “Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy,” Nature Medicine, vol. 16, no. 5, pp. 565–570, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. J. S. Bridgeman, R. E. Hawkins, A. A. Hombach, H. Abken, and D. E. Gilham, “Building better chimeric antigen receptors for adoptive T cell therapy,” Current Gene Therapy, vol. 10, no. 2, pp. 77–90, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. H. M. Finney, A. N. Akbar, and A. D. G. Lawson, “Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain,” The Journal of Immunology, vol. 172, no. 1, pp. 104–113, 2004. View at Google Scholar · View at Scopus
  34. A. Hombach, A. Wieczarkowiecz, T. Marquardt et al., “Tumor-specific T cell activation by recombinant immunoreceptors: CD3ζ signaling and CD28 costimulation are simultaneously required for efficient IL-2 secretion and can be integrated into one combined CD28/CD3ζ signaling receptor molecule,” The Journal of Immunology, vol. 167, no. 11, pp. 6123–6131, 2001. View at Google Scholar · View at Scopus
  35. C. H. J. Lamers, P. van Elzakker, S. C. L. Langeveld, S. Sleijfer, and J. W. Gratama, “Process validation and clinical evaluation of a protocol to generate gene-modified T lymphocytes for imunogene therapy for metastatic renal cell carcinoma: GMP-controlled transduction and expansion of patient's T lymphocytes using a carboxy anhydrase IX-specific scFv transgene,” Cytotherapy, vol. 8, no. 6, pp. 542–553, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. C.-A. Tran, L. Burton, D. Russom et al., “Manufacturing of large numbers of patient-specific T cells for adoptive immunotherapy: an approach to improving product safety, composition, and production capacity,” Journal of Immunotherapy, vol. 30, no. 6, pp. 644–654, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Masiero, C. Del Vecchio, R. Gavioli et al., “T-cell engineering by a chimeric T-cell receptor with antibody-type specificity for the HIV-1 gp120,” Gene Therapy, vol. 12, no. 4, pp. 299–310, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. V. Bruss, “Hepatitis B virus morphogenesis,” World Journal of Gastroenterology, vol. 13, no. 1, pp. 65–73, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. C.-M. Chu and Y.-F. Liaw, “Membrane staining for hepatitis B surface antigen on hepatocytes: a sensitive and specific marker of active viral replication in hepatitis B,” Journal of Clinical Pathology, vol. 48, no. 5, pp. 470–473, 1995. View at Google Scholar · View at Scopus
  40. F. Bohne, M. Chmielewski, G. Ebert et al., “T cells redirected against hepatitis B virus surface proteins eliminate infected hepatocytes,” Gastroenterology, vol. 134, no. 1, pp. 239–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. W. F. Carman, F. J. Van Deursen, L. T. Mimms et al., “The prevalence of surface antigen variants of hepatitis B virus in Papua New Guinea, South Africa, and Sardinia,” Hepatology, vol. 26, no. 6, pp. 1658–1666, 1997. View at Google Scholar · View at Scopus
  42. L. G. Guidotti and F. V. Chisari, “Cytokine-mediated control of viral infections,” Virology, vol. 273, no. 2, pp. 221–227, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Dumortier, K. Schönig, H. Oberwinkler et al., “Liver-specific expression of interferon γ following adenoviral gene transfer controls hepatitis B virus replication in mice,” Gene Therapy, vol. 12, no. 8, pp. 668–677, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Hombach, D. Koch, R. Sircar et al., “A chimeric receptor that selectively targets membrane-bound carcinoembryonic antigen (mCEA) in the presence of soluble CEA,” Gene Therapy, vol. 6, no. 2, pp. 300–304, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. J. M. Murray, S. F. Wieland, R. H. Purcell, and F. V. Chisari, “Dynamics of hepatitis B virus clearance in chimpanzees,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 49, pp. 17780–17785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. L. G. Guidotti, R. Rochford, J. Chung, M. Shapiro, R. Purcell, and F. V. Chisari, “Viral clearance without destruction of infected cells during acute HBV infection,” Science, vol. 284, no. 5415, pp. 825–829, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. M. K. Maini, C. Boni, C. K. Lee et al., “The role of virus-specific CD8+ cells in liver damage and viral control during persistent hepatitis B virus infection,” The Journal of Experimental Medicine, vol. 191, no. 8, pp. 1269–1280, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Lutgehetmann, T. Volz, A. Köpke et al., “In vivo proliferation of hepadnavirus-infected hepatocytes induces loss of covalently closed circular DNA in mice,” Hepatology, vol. 52, no. 1, pp. 16–24, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Puro and R. J. Schneider, “Tumor necrosis factor activates a conserved innate antiviral response to hepatitis B virus that destabilizes nucleocapsids and reduces nuclear viral DNA,” The Journal of Virology, vol. 81, no. 14, pp. 7351–7362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Hösel, M. Quasdorff, K. Wiegmann et al., “Not interferon, but interleukin-6 controls early gene expression in hepatitis B virus infection,” Hepatology, vol. 50, no. 6, pp. 1773–1782, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. R. G. van der Molen, D. Sprengers, R. S. Binda et al., “Functional impairment of myeloid and plasmacytoid dendritic cells of patients with chronic hepatitis B,” Hepatology, vol. 40, no. 3, pp. 738–746, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. A. Untergasser, U. Zedler, A. Langenkamp et al., “Dendritic cells take up viral antigens but do not support the early steps of hepatitis B virus infection,” Hepatology, vol. 43, no. 3, pp. 539–547, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Visvanathan, N. A. Skinner, A. J. V. Thompson et al., “Regulation of Toll-like receptor-2 expression in chronic hepatitis B by the precore protein,” Hepatology, vol. 45, no. 1, pp. 102–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. W. Chen, Z. Zhang, M. Shi et al., “Activated plasmacytoid dendritic cells act synergistically with hepatitis B core antigen-pulsed monocyte-derived dendritic cells in the induction of hepatitis B virus-specific CD8 T-cell response,” Clinical Immunology, vol. 129, no. 2, pp. 295–303, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. M. R. Roberts, L. Qin, D. Zhang et al., “Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors,” Blood, vol. 84, no. 9, pp. 2878–2889, 1994. View at Google Scholar · View at Scopus
  56. O. O. Yang, A.-C. Tran, S. A. Kalams, R. P. Johnson, M. R. Roberts, and B. D. Walker, “Lysis of HIV-1-infected cells and inhibition of viral replication by universal receptor T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 21, pp. 11478–11483, 1997. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Walker, C. Bechtel, V. Natarajan et al., “In vivo persistence of genetically modified HIV-1-specific syngeneic lymphocytes in HIV-1-discordant identical twins,” in Proceedings of the 12th World AIDS Conference, p. 838, Geneva, Switzerland, 1998.
  58. R. T. Mitsuyasu, P. A. Anton, S. G. Deeks et al., “Prolonged survival and tissue trafficking following adoptive transfer of CD4ζ gene-modified autologous CD4+ and CD8+ T cells in human immunodeficiency virus-infected subjects,” Blood, vol. 96, no. 3, pp. 785–793, 2000. View at Google Scholar · View at Scopus
  59. S. G. Deeks, B. Wagner, P. A. Anton et al., “A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy,” Molecular Therapy, vol. 5, no. 6, pp. 788–797, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. M. A. Pule, B. Savoldo, G. D. Myers et al., “Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma,” Nature Medicine, vol. 14, no. 11, pp. 1264–1270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Chmielewski, A. Hombach, C. Heuser, G. P. Adams, and H. Abken, “T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity,” The Journal of Immunology, vol. 173, no. 12, pp. 7647–7653, 2004. View at Google Scholar · View at Scopus
  62. G. Stewart-Jones, A. Wadle, A. Hombach et al., “Rational development of high-affinity T-cell receptor-like antibodies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5784–5788, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. R. A. Morgan, J. C. Yang, M. Kitano, M. E. Dudley, C. M. Laurencot, and S. A. Rosenberg, “Case report of a serious adverse event following the administration of t cells transduced with a chimeric antigen receptor recognizing ERBB2,” Molecular Therapy, vol. 18, no. 4, pp. 843–851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. E. Kieback, J. Charo, D. Sommermeyer, T. Blankenstein, and W. Uckert, “A safeguard eliminates T cell receptor gene-modified autoreactive T cells after adoptive transfer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 2, pp. 623–628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. M. A. de Witte, A. Jorritsma, E. Swart et al., “An inducible caspase 9 safety switch can halt cell therapy-induced autoimmune disease,” The Journal of Immunology, vol. 180, no. 9, pp. 6365–6373, 2008. View at Google Scholar · View at Scopus
  66. S. Newrzela, K. Cornils, Z. Li et al., “Resistance of mature T cells to oncogene transformation,” Blood, vol. 112, no. 6, pp. 2278–2286, 2008. View at Publisher · View at Google Scholar · View at Scopus