Table of Contents Author Guidelines Submit a Manuscript
HPB Surgery
Volume 2009, Article ID 397375, 6 pages
http://dx.doi.org/10.1155/2009/397375
Research Article

Soluble E-Cadherin: An Early Marker of Severity in Acute Pancreatitis

1HPB Surgical Unit, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, UK
2Department of Surgery, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH, UK

Received 1 December 2008; Accepted 18 February 2009

Academic Editor: Attila Olah

Copyright © 2009 A. Sewpaul et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Fitz, “Acute pancreatitis: a consideration of pancreatic haemorrhage, haemorrhagic, suppurative, and gangrenous pancreatitis, and of disseminated fat-necrosis,” Boston Medical and Surgical Journal, vol. 120, pp. 181–187, 205–207, 229–235, 1889. View at Google Scholar
  2. A. P. Corfield, M. J. Cooper, and R. C. Williamson, “Acute pancreatitis: a lethal disease of increasing incidence,” Gut, vol. 26, no. 7, pp. 724–729, 1985. View at Publisher · View at Google Scholar
  3. J. P. Neoptolemos, “Endoscopic treatment of acute and chronic pancreatitis,” Italian Journal of Gastroenterology and Hepatology, vol. 30, no. 5, p. 556, 1998. View at Google Scholar
  4. A. K. Banerjee, A. Kaul, E. Bache, A. C. Parberry, J. Doran, and M. L. Nicholson, “An audit of fatal acute pancreatitis,” Postgraduate Medical Journal, vol. 71, no. 838, pp. 472–475, 1995. View at Publisher · View at Google Scholar
  5. C. W. Imrie and C. J. McKay, “The possible role of platelet-activating factor antagonist therapy in the management of severe acute pancreatitis,” Bailliere's Best Practice in Clinical Gastroenterology, vol. 13, no. 2, pp. 357–364, 1999. View at Publisher · View at Google Scholar
  6. C. Dervenis, C. D. Johnson, C. Bassi et al., “Diagnosis, objective assessment of severity, and management of acute pancreatitis. Santorini consensus conference,” International Journal of Pancreatology, vol. 25, no. 3, pp. 195–210, 1999. View at Google Scholar
  7. W. Uhl, A. Warshaw, C. W. Imrie et al., “IAP guidelines for the surgical management of acute pancreatitis,” Pancreatology, vol. 2, no. 6, pp. 565–573, 2002. View at Publisher · View at Google Scholar
  8. C. D. Johnson, R. Charnley, B. Rowlands et al., “UK guidelines for the management of acute pancreatitis,” Gut, vol. 54, supplement 3, pp. iii1–iii9, 2005. View at Publisher · View at Google Scholar · View at PubMed
  9. J. Werner, S. Feuerbach, W. Uhl, and M. W. Büchler, “Management of acute pancreatitis: from surgery to interventional intensive care,” Gut, vol. 54, no. 3, pp. 426–436, 2005. View at Publisher · View at Google Scholar · View at PubMed
  10. C. D. Johnson, A. N. Kingsnorth, C. W. Imrie et al., “Double blind, randomised, placebo controlled study of a platelet activating factor antagonist, lexipafant, in the treatment and prevention of organ failure in predicted severe acute pancreatitis,” Gut, vol. 48, no. 1, pp. 62–69, 2001. View at Publisher · View at Google Scholar
  11. W. Uhl, M. Büchler, P. Malfertheiner, H. G. Beger, G. Adler, and W. Gaus, “A randomised, double blind, multicentre trial of octreotide in moderate to severe acute pancreatitis,” Gut, vol. 45, no. 1, pp. 97–104, 1999. View at Google Scholar
  12. C. W. Imrie, A. J. Mckay, and J. O. Neill, “Short duration megadosage IV Trasylol in primary acute pancreatitis—a double-blind trial,” Gut, vol. 21, no. 5, pp. A457–A458, 1980. View at Google Scholar
  13. C. Wilson, D. I. Heath, and C. W. Imrie, “Prediction of outcome in acute pancreatitis: a comparative study of APACHE II, clinical assessment and multiple factor scoring systems,” British Journal of Surgery, vol. 77, no. 11, pp. 1260–1264, 1990. View at Publisher · View at Google Scholar
  14. J. H. Ranson, K. M. Rifkind, D. F. Roses, S. D. Fink, K. Eng, and S. A. Localio, “Objective early identification of severe acute pancreatitis,” American Journal of Gastroenterology, vol. 61, no. 6, pp. 443–451, 1974. View at Google Scholar
  15. S. L. Blamey, C. W. Imrie, J. O'Neill, W. H. Gilmour, and D. C. Carter, “Prognostic factors in acute pancreatitis,” Gut, vol. 25, no. 12, pp. 1340–1346, 1984. View at Publisher · View at Google Scholar
  16. W. A. Knaus, E. A. Draper, D. P. Wagner, and J. E. Zimmerman, “APACHE II: a severity of disease classification system,” Critical Care Medicine, vol. 13, no. 10, pp. 818–829, 1985. View at Publisher · View at Google Scholar
  17. E. J. Balthazar, “Acute pancreatitis: assessment of severity with clinical and CT evaluation,” Radiology, vol. 223, no. 3, pp. 603–613, 2002. View at Publisher · View at Google Scholar
  18. J. P. Neoptolemos, E. A. Kemppainen, J. M. Mayer et al., “Early prediction of severity in acute pancreatitis by urinary trypsinogen activation peptide: a multicentre study,” The Lancet, vol. 355, no. 9219, pp. 1955–1960, 2000. View at Publisher · View at Google Scholar
  19. V. S. Swaroop, S. T. Chari, and J. E. Clain, “Severe acute pancreatitis,” Journal of the American Medical Association, vol. 291, no. 23, pp. 2865–2868, 2004. View at Publisher · View at Google Scholar · View at PubMed
  20. C. D. Johnson, M. Lempinen, C. W. Imrie et al., “Urinary trypsinogen activation peptide as a marker of severe acute pancreatitis,” British Journal of Surgery, vol. 91, no. 8, pp. 1027–1033, 2004. View at Publisher · View at Google Scholar · View at PubMed
  21. J. Sáez, J. Martínez, C. Trigo et al., “Clinical value of rapid urine trypsinogen-2 test strip, urinary trypsinogen activation peptide, and serum and urinary activation peptide of carboxypeptidase B in acute pancreatitis,” World Journal of Gastroenterology, vol. 11, no. 46, pp. 7261–7265, 2005. View at Google Scholar
  22. T. Inagaki, M. Hoshino, T. Hayakawa et al., “Interleukin-6 is a useful marker for early prediction of the severity of acute pancreatitis,” Pancreas, vol. 14, no. 1, pp. 1–8, 1997. View at Publisher · View at Google Scholar
  23. G. K. Bidarkundi, J. D. Wig, A. Bhatnagar, and S. Majumdar, “Clinical relevance of intracellular cytokines IL-6 and IL-12 in acute pancreatitis, and correlation with APACHE III score,” British Journal of Biomedical Science, vol. 59, no. 2, pp. 85–89, 2002. View at Google Scholar
  24. B. M. Rau, E. A. Kemppainen, A. A. Gumbs et al., “Early assessment of pancreatic infections and overall prognosis in severe acute pancreatitis by procalcitonin (PCT): a prospective international multicenter study,” Annals of Surgery, vol. 245, no. 5, pp. 745–754, 2007. View at Publisher · View at Google Scholar · View at PubMed
  25. M.-L. Kylänpää-Bäck, A. Takala, E. A. Kemppainen, P. Puolakkainen, R. Haapiainen, and H. Repo, “Procalcitonin strip test in the early detection of severe acute pancreatitis,” British Journal of Surgery, vol. 88, no. 2, pp. 222–227, 2001. View at Publisher · View at Google Scholar · View at PubMed
  26. S. Ikei, M. Ogawa, and Y. Yamaguchi, “Blood concentrations of polymorphonuclear leucocyte elastase and interleukin-6 are indicators for the occurrence of multiple organ failures at the early stage of acute pancreatitis,” Journal of Gastroenterology and Hepatology, vol. 13, no. 12, pp. 1274–1283, 1998. View at Publisher · View at Google Scholar
  27. B. M. Rau, G. Steinbach, K. Baumgart, F. Gansauge, A. Grünert, and H. G. Beger, “Serum amyloid A versus C-reactive protein in acute pancreatitis: clinical value of an alternative acute-phase reactant,” Critical Care Medicine, vol. 28, no. 3, pp. 736–742, 2000. View at Publisher · View at Google Scholar
  28. M. J. Wheelock, C. A. Buck, K. B. Bechtol, and C. H. Damsky, “Soluble 80-kd fragment of cell-CAM 120/80 disrupts cell-cell adhesion,” Journal of cellular biochemistry, vol. 34, no. 3, pp. 187–202, 1987. View at Publisher · View at Google Scholar · View at PubMed
  29. M. Takeichi, “The cadherins: cell-cell adhesion molecules controlling animal morphogenesis,” Development, vol. 102, no. 4, pp. 639–655, 1988. View at Google Scholar
  30. V. Noë, B. Fingleton, K. Jacobs et al., “Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1,” Journal of Cell Science, vol. 114, no. 1, pp. 111–118, 2001. View at Google Scholar
  31. J. Symowicz, B. P. Adley, K. J. Gleason et al., “Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells,” Cancer Research, vol. 67, no. 5, pp. 2030–2039, 2007. View at Publisher · View at Google Scholar · View at PubMed
  32. B. Nawrocki-Raby, C. Gilles, M. Polette et al., “Upregulation of MMPS by soluble E-cadherin in human lung tumor cells,” International Journal of Cancer, vol. 105, no. 6, pp. 790–795, 2003. View at Publisher · View at Google Scholar · View at PubMed
  33. K. Ito, I. Okamoto, N. Araki et al., “Calcium influx triggers the sequential proteolysis of extracellular and cytoplasmic domains of E-cadherin, leading to loss of β-catenin from cell-cell contacts,” Oncogene, vol. 18, no. 50, pp. 7080–7090, 1999. View at Publisher · View at Google Scholar · View at PubMed
  34. G. Davies, W. G. Jiang, and M. D. Mason, “Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion,” Clinical Cancer Research, vol. 7, no. 10, pp. 3289–3297, 2001. View at Google Scholar
  35. U. Steinhusen, J. Weiske, V. Badock, R. Tauber, K. Bommert, and O. Huber, “Cleavage and Shedding of E-cadherin after Induction of Apoptosis,” The Journal of Biological Chemistry, vol. 276, no. 7, pp. 4972–4980, 2001. View at Publisher · View at Google Scholar · View at PubMed
  36. S. K. Johnson, V. C. Ramani, L. Hennings, and R. S. Haun, “Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin,” Cancer, vol. 109, no. 9, pp. 1811–1820, 2007. View at Publisher · View at Google Scholar · View at PubMed
  37. Y. Hayashido, T. Hamana, Y. Yoshioka, H. Kitano, K. Koizumi, and T. Okamoto, “Plasminogen activator/plasmin system suppresses cell-cell adhesion of oral squamous cell carcinoma cells via proteolysis of E-cadherin,” International Journal of Oncology, vol. 27, no. 3, pp. 693–698, 2005. View at Google Scholar
  38. M. Katayama, S. Hirai, K. Kamihagi, K. Nakagawa, M. Yasumoto, and I. Kato, “Soluble E-cadherin fragments increased in circulation of cancer patients,” British Journal of Cancer, vol. 69, no. 3, pp. 580–585, 1994. View at Google Scholar
  39. M. Cioffi, P. Gazzerro, B. Di Finizio et al., “Serum-soluble E-cadherin fragments in lung cancer,” Tumori, vol. 85, no. 1, pp. 32–34, 1999. View at Google Scholar
  40. J. Gofuku, H. Shiozaki, Y. Doki et al., “Characterization of soluble E-cadherin as a disease marker in gastric cancer patients,” British Journal of Cancer, vol. 78, no. 8, pp. 1095–1101, 1998. View at Google Scholar
  41. G. Velikova, R. E. Banks, A. Gearing et al., “Serum concentrations of soluble adhesion molecules in patients with colorectal cancer,” British Journal of Cancer, vol. 77, no. 11, pp. 1857–1863, 1998. View at Google Scholar
  42. A. O. O. Chan, S. K. Lam, K. M. Chu et al., “Soluble E-cadherin is a valid prognostic marker in gastric carcinoma,” Gut, vol. 48, no. 6, pp. 808–811, 2001. View at Publisher · View at Google Scholar
  43. T. R. L. Griffiths, I. Brotherick, R. I. Bishop et al., “Cell adhesion molecules in bladder cancer: soluble serum E-cadherin correlates with predictors of recurrence,” British Journal of Cancer, vol. 74, no. 4, pp. 579–584, 1996. View at Google Scholar
  44. K. Sundfeldt, K. Ivarsson, K. Rask, M. Haeger, L. Hedin, and M. Brännström, “Higher levels of soluble E-cadherin in cyst fluid from malignant ovarian tumours than in benign cysts,” Anticancer Research, vol. 21, no. 1A, pp. 65–70, 2001. View at Google Scholar
  45. A. Gadducci, M. Ferdeghini, S. Cosio et al., “Preoperative serum E-cadherin assay in patients with ovarian carcinoma,” Anticancer Research, vol. 19, no. 1B, pp. 769–772, 1999. View at Google Scholar
  46. A. J. Pittard, R. E. Banks, H. F. Galley, and F. N. R. Webster, “Soluble E-cadherin concentrations in patients with systemic inflammatory response syndrome and multiorgan dysfunction syndrome,” British Journal of Anaesthesia, vol. 76, no. 5, pp. 629–631, 1996. View at Google Scholar
  47. E. L. Bradley III, “A clinically based classification system for acute pancreatitis: summary of the International Symposium on Acute Pancreatitis, Atlanta, Ga, September 11 through 13, 1992,” Archives of Surgery, vol. 128, no. 5, pp. 586–590, 1993. View at Google Scholar
  48. B. E. Muhs, S. Patel, H. Yee, S. Marcus, and P. Shamamian, “Increased matrix metalloproteinase expression and activation following experimental acute pancreatitis,” Journal of Surgical Research, vol. 101, no. 1, pp. 21–28, 2001. View at Publisher · View at Google Scholar · View at PubMed
  49. M. M. Lerch, M. P. Lutz, H. Weidenbach et al., “Dissociation and reassembly of adherens junctions during experimental acute pancreatitis,” Gastroenterology, vol. 113, no. 4, pp. 1355–1366, 1997. View at Publisher · View at Google Scholar
  50. J. Norman, “Role of cytokines in the pathogenesis of acute pancreatitis,” The American Journal of Surgery, vol. 175, no. 1, pp. 76–83, 1998. View at Publisher · View at Google Scholar