Table of Contents Author Guidelines Submit a Manuscript
International Journal of Analysis
Volume 2013, Article ID 901318, 17 pages
http://dx.doi.org/10.1155/2013/901318
Review Article

New Results on Markov Moment Problem

Department of Mathematics-Informatics, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania

Received 14 September 2012; Revised 17 November 2012; Accepted 19 November 2012

Academic Editor: Remi Léandre

Copyright © 2013 Octav Olteanu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, Oliver and Boyd, London, UK, 1965. View at Zentralblatt MATH · View at MathSciNet
  2. C. Ambrozie and O. Olteanu, “A sandwich theorem, the moment problem, finite-simplicial sets and some inequalities,” Revue Roumaine de Mathématique Pures et Appliquées, vol. 49, pp. 189–210, 2004. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  3. G. Choquet, Le ProbLème Des Moments, Séminaire D’Initiation À L’AnaLise, Institut Henri Poincaré, Paris, France, 1962.
  4. M. G. Krein and A. A. Nudelman, Markov Moment Problem and Extremal Problems, American Mathematical Society, Providence, RI, USA, 1977. View at MathSciNet
  5. L. L. Ninulescu and O. Olteanu, “Extension of linear operators, distanced convex sets and the moment problem,” Mathematica, vol. 69, no. 1, pp. 81–88, 2004. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. L. L. Ninulescu, “Using the solution of an abstract moment problem to solve some classical complex moment problems,” Romanian Journal of Pure and Applied Mathematics, vol. 51, pp. 703–711, 2006. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. L. Lemnete-Ninulescu, A. Olteanu, and O. Olteanu, “Applications of the solutions of two abstract moment problems to the classical moment problem,” Mathematica, vol. 71, no. 2, pp. 173–182, 2006. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  8. J. M. Mihăilă, O. Olteanu, and C. Udrişte, “Markov-type and operator-valued multidimensional moment problems, with some applications,” Romanian Journal of Pure and Applied Mathematics, vol. 52, pp. 405–428, 2007. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. J. M. Mihăilă, O. Olteanu, and C. Udrişte, “Markov-type moment problems for arbitrary compact and for some non-compact Borel subsets of Rn,” Romanian Journal of Pure and Applied Mathematics, vol. 52, pp. 655–664, 2007. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. A. Olteanu and O. Olteanu, “Some unexpected problems of the moment problem,” in Proceedings of the 6th Congress of Romanian Mathematicians, vol. 1, pp. 347–355, Editura Academiei Române, Bucharest, Romania, 2009. View at MathSciNet
  11. O. Olteanu, “Application de théorèmes de prolongement d’opérateurs linéaires au problème des moments et à une generalisation d’un théorème de Mazur-Orlicz,” Comptes Rendus de l'Académie des Sciences, Série I, vol. 313, pp. 739–742, 1991. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  12. O. Olteanu, “Applications of a general sandwich theorem for operators to the moment problem,” Revue Roumaine de Mathématique Pures et Appliquées, vol. 1, no. 2, pp. 513–521, 1996. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  13. O. Olteanu, “New aspects of the classical moment problem,” Romanian Journal of Pure and Applied Mathematics, vol. 49, pp. 63–77, 2004. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  14. R. Cristescu, Ordered Vector Spaces and Linear Operators, Editura Academiei, Bucharest, and Abacus Press, Kent, UK, 1976. View at MathSciNet
  15. H. H. Schaefer, Topological Vector Spaces, Springer, Berlin, Germany, 1971. View at MathSciNet
  16. O. Olteanu, “Convexité et prolongement d’opérateurs linéaires,” Comptes Rendus de l'Académie des Sciences, Série I, vol. 286, pp. 511–514, 1978. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  17. O. Olteanu, “Théorèmes de prolongement d’opérateurs linéaires,” Revue Roumaine de Mathématique Pures et Appliquées, vol. 28, no. 10, pp. 953–983, 1983. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. C. Berg, J. P. R. Christensen, and C. U. Jensen, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Springer, Berlin, Germany, 1984. View at Publisher · View at Google Scholar · View at MathSciNet
  19. B. Fuglede, “The multidimensional moment problem,” Expositiones Mathematicae, vol. 1, pp. 47–65, 1983. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  20. L. Gosse and O. Runborg, “Existence, uniqueness, and a constructive solution algorithm for a class of finite Markov moment problems,” SIAM Journal on Applied Mathematics, vol. 68, no. 6, pp. 1618–1640, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. C. Kleiber and J. Stoyanov, “Multivariate distributions and the moment problem,” Journal of Multivariate Analysis, vol. 113, pp. 7–18, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  22. J. Stoyanov, “Stieltjes classes for moment-indeterminate probability distributions,” Journal of Applied Probability A, vol. 41, pp. 281–294, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  23. C. Berg and A. J. Durán, “The fixed point for a transformation of Hausdorff moment sequences and iteration of a rational function,” Mathematica Scandinavica, vol. 103, no. 1, pp. 11–39, 2008. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  24. L. Gosse and O. Runborg, “Resolution of the finite Markov moment problem,” Comptes Rendus Mathematique, vol. 341, no. 12, pp. 775–780, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  25. M. Putinar and F. H. Vasilescu, “Problème des moments sur les compacts semi-algébriques,” Comptes Rendus de l'Académie des Sciences , Série I, vol. 323, pp. 787–791, 1996. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. J. Stochel, “Solving the truncated moment problem solves the full moment problem,” Glasgow Mathematical Journal, vol. 43, no. 3, pp. 335–341, 2001. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. R. B. Holmes, Geometric Functional Analysis, Springer, Berlin, Germany, 1975. View at MathSciNet
  28. W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, NY, USA, 3rd edition, 1987. View at MathSciNet