Table of Contents
International Journal of Atmospheric Sciences
Volume 2013 (2013), Article ID 326010, 9 pages
http://dx.doi.org/10.1155/2013/326010
Research Article

Temporal Patterns of Energy Balance for a Brazilian Tropical Savanna under Contrasting Seasonal Conditions

1Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-MT, Brazil
2Departamento de Agronomia e Medicina Veterinária, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-MT, Brazil
3Department of Biological Sciences, California State University, San Marcos, San Diego, CA 92096, USA

Received 5 February 2013; Revised 3 June 2013; Accepted 10 June 2013

Academic Editor: Dimitris G. Kaskaoutis

Copyright © 2013 Thiago R. Rodrigues et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Scholes and S. R. Archer, “Tree-grass interactions in Savannas,” Annual Review of Ecology and Systematics, vol. 28, pp. 517–544, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. T. W. Giambelluca, F. G. Scholz, S. J. Bucci et al., “Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density,” Agricultural and Forest Meteorology, vol. 149, no. 8, pp. 1365–1376, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. R. J. Lascano, Review of Models for Predicting Soil Water Balance. Soil Water Balance in the Sudano-Shaelian Zone, IAHS Press, 1991.
  4. J. J. San José, N. Nikonova, and R. Bracho, “Comparison of factors affecting water transfer in a cultivated paleotropical grass (Brachiaria decumbens Stapf) field and a neotropical savanna during the dry season of the Orinoco lowlands,” Journal of Applied Meteorology, vol. 37, no. 5, pp. 509–522, 1998. View at Google Scholar · View at Scopus
  5. T. R. Rodrigues, L. F. A. Curado, J. W. Z. Novais et al., “Distribuição dos componentes do balanço de energia do Pantanal Mato-grossense,” Revista De Ciências Agro-Ambientais, vol. 9, no. 2, pp. 165–175, 2011. View at Google Scholar
  6. P. S. Oliveira and R. J. Marquis, The Cerrados of Brazil, Columbia University Press, New York, NY, USA, 2002.
  7. C. A. Klink and A. G. Moreira, Past and Current Human Occupation, and Land-Use. The Cerrados of Brazil: Ecology and Natural History of a Neotropical Savanna, Columbia University Press, New York, NY, USA, 2002.
  8. C. Mueller, “Expansion and modernization of agriculture in the cerrado—the case of soybeans in Brazil’s center-west,” Working Paper 306, Department of Economics, University of Brasilia, Brasilia, Brazil, 2003. View at Google Scholar
  9. R. S. Oliveira, L. Bezerra, E. A. Davidson et al., “Deep root function in soil water dynamics in cerrado savannas of central Brazil,” Functional Ecology, vol. 19, no. 4, pp. 574–581, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Ratter, J. F. Ribeiro, and S. Bridgewater, “The Brazilian cerrado vegetation and threats to its biodiversity,” Annals of Botany, vol. 80, no. 3, pp. 223–230, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. G. L. Vourlitis and H. R. da Rocha, “Flux dynamics in the cerrado and cerrado-forest transition of Brazil,” in Ecosystem Function in Global Savannas: Measurement and Modeling at Landscape To Global Scales, M. J. Hill and N. P. Hanan, Eds., pp. 97–116, CRC, Boca Raton, Fla, USA, 2011. View at Google Scholar
  12. C. Von Randow, A. O. Manzi, B. Kruijt et al., “Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia,” Theoretical and Applied Climatology, vol. 78, no. 1–3, pp. 5–26, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Zeri and L. D. A. Sá, “The impact of data gaps and quality control filtering on the balances of energy and carbon for a Southwest Amazon forest,” Agricultural and Forest Meteorology, vol. 150, no. 12, pp. 1543–1552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. L. Vourlitis, J. de Souza Nogueira, F. de Almeida Lobo et al., “Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin,” Water Resources Research, vol. 44, no. 3, Article ID W03412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. A. Minor, “Surface energy balance and 24-h evapotranspiration on an agricultural landscape with SRF willow in central New York,” Biomass and Bioenergy, vol. 33, no. 12, pp. 1710–1718, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Chen, J. Chen, G. Lin et al., “Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types,” Agricultural and Forest Meteorology, vol. 149, no. 11, pp. 1800–1809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. R. A. Memon, D. Y. C. Leung, and L. Chunho, “A review on the generation, determination and mitigation of Urban Heat Island,” Journal of Environmental Science, vol. 20, pp. 120–128, 2008. View at Google Scholar
  18. J. L. Schedlbauer, S. F. Oberbauer, G. Starr, and K. L. Jimenez, “Controls on sensible heat and latent energy fluxes from a short-hydroperiod Florida Everglades marsh,” Journal of Hydrology, vol. 411, no. 3-4, pp. 331–341, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. B. G. Heusinkveld, A. F. G. Jacobs, A. A. M. Holtslag, and S. M. Berkowicz, “Surface energy balance closure in an arid region: role of soil heat flux,” Agricultural and Forest Meteorology, vol. 122, no. 1-2, pp. 21–37, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. H. Costa and G. F. Pires, “Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation,” International Journal of Climatology, vol. 30, no. 13, pp. 1970–1979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. K. Kharol, D. G. Kaskaoutis, K. V. S. Badarinath, A. R. Sharma, and R. P. Singh, “Influence of land use/land cover (LULC) changes on atmospheric dynamics over the arid region of Rajasthan state, India,” Journal of Arid Environments, vol. 88, pp. 90–101, 2013. View at Google Scholar
  22. A. D. Culf, J. L. Esteves, A. O. Marques Filho, and H. R. da Rocha, “Radiation, temperature and humidity over forest and pasture in Amazonia,” in Amazonian Climate and Deforestation, J. H. C. Gash, C. A. Nobre, J. M. Roberts, and R. L. Victoria, Eds., pp. 175–192, J. M. Wiley and Sons, New York, NY, USA, 1996. View at Google Scholar
  23. Radambrasil, Levantamentos dos Recursos Naturais Ministério das Minas de Energia. Secretaria Geral. Projeto RADAMBRASIL. Folha SD 21 Cuiabá, Rio de Janeiro, Brazil, 1982.
  24. I. S. Bowen, “The ratio of heat losses by conduction and by evaporation from any water surface,” Physical Review, vol. 27, no. 6, pp. 779–787, 1926. View at Publisher · View at Google Scholar · View at Scopus
  25. P. J. Perez, F. Castellvi, M. Ibañez, and J. I. Rosell, “Assessment of reliability of Bowen ratio method for partitioning fluxes,” Agricultural and Forest Meteorology, vol. 97, no. 3, pp. 141–150, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Z. Drexler, R. L. Snyder, D. Spano, and U. Kyaw Tha Paw, “A review of models and micrometeorological methods used to estimate wetland evapotranspiration,” Hydrological Processes, vol. 18, no. 11, pp. 2071–2101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Monteith and M. Unsworth, Principles of Environmental Physics, Arnold, London, UK, 1990.
  28. R. G. Allen, L. S. Pereira, D. Raes, and M. Smith, “Evapotranspiración del Cultivo,” in Guías Para la Determinación de los Requerimientos de Agua de los Cultivos, p. 298, Organización de las Naciones Unidas para la Agricultura y La Alimentación (FAO), 2006.
  29. P. J. Perez, F. Castellvi, and A. Martínez-Cob, “A simple model for estimating the Bowen ratio from climatic factors for determining latent and sensible heat flux,” Agricultural and Forest Meteorology, vol. 148, no. 1, pp. 25–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Chapman & Hall, New York, NY, USA, 1993.
  31. L. A. T. Machado, H. Laurent, N. Dessay, and I. Miranda, “Seasonal and diurnal variability of convection over the Amazonia: a comparison of different vegetation types and large scale forcing,” Theoretical and Applied Climatology, vol. 78, no. 1–3, pp. 61–77, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Ratana, A. R. Huete, and L. Ferreira, “Analysis of cerrado physiognomies and conversion in the MODIS seasonal-temporal domain,” Earth Interactions, vol. 9, no. 3, 2005. View at Google Scholar · View at Scopus
  33. M. S. Biudes, “Balanço de energia em área de vegetação monodominante de Cambará e pastagem no norte do Pantanal,” Tese (doutorado)—Universidade Federal de Mato Grosso, Faculdade de Agronomia e Medicina Veterinária, Pós-graduação em Agricultura Tropical, 2008.
  34. W. Eugster, W. R. Rouse, R. A. Pielke et al., “Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate,” Global Change Biology, vol. 6, no. 1, pp. 84–115, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Priante-Filho, G. L. Vourlitis, M. M. S. Hayashi et al., “Comparison of the mass and energy exchange of a pasture and a mature transitional tropical forest of the southern Amazon Basin during a seasonal transition,” Global Change Biology, vol. 10, no. 5, pp. 863–876, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. M. H. Costa, A. Botta, and J. A. Cardille, “Effects of large-scale changes in land cover on the discharge of the Tocantins River, Southeastern Amazonia,” Journal of Hydrology, vol. 283, pp. 206–217, 2003. View at Google Scholar
  37. A. C. Miranda, H. S. Miranda, J. Lloyd et al., “Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes,” Plant, Cell and Environment, vol. 20, no. 3, pp. 315–328, 1997. View at Google Scholar · View at Scopus
  38. Y. Malhi, E. Pegoraro, A. D. Nobre et al., “Energy and water dynamics of a central Amazonian rain forest,” Journal of Geophysical Research D, vol. 107, no. 20, p. 8061, 2002. View at Google Scholar · View at Scopus
  39. H. R. da Rocha, M. L. Goulden, S. D. Miller et al., “Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia,” Ecological Applications, vol. 14, no. 4, pp. S22–S32, 2004. View at Google Scholar · View at Scopus
  40. H. R. Rocha, A. O. Manzi, O. M. Cabral et al., “Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil,” Journal of Geophysical Research-Biogeosciences, vol. 114, no. 1, 2009. View at Publisher · View at Google Scholar
  41. D. Hillel, “Thermal properties and processes,” in Encyclopedia of Soils in the Environment, D. Hillel, C. Rosenzweig, D. Powlson, K. Scow, M. Singer, and D. Sparks, Eds., pp. 156–163, Academic Press, San Diego, Calif, USA, 2005. View at Google Scholar
  42. A. J. B. Santos, G. T. D. A. Silva, H. S. Miranda, A. C. Miranda, and J. Lloyd, “Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil,” Functional Ecology, vol. 17, no. 6, pp. 711–719, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. H. R. Rocha, H. C. Freitas, R. Rosolem et al., “Measurements of CO2 exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brazil,” Biota Neotropica, vol. 2, pp. 1–11, 2002. View at Google Scholar
  44. S. J. Bucci, F. G. Scholz, G. Goldstein et al., “Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna,” Agricultural and Forest Meteorology, vol. 148, no. 6-7, pp. 839–849, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. H. J. Dalmagro, F. A. Lobo, G. L. Vourlitis et al., “Photosynthetic parameters for two invasive tree species of the Brazilian Pantanal in response to seasonal flooding,” Photosynthetica, vol. 51, pp. 281–294, 2013. View at Publisher · View at Google Scholar