Table of Contents
International Journal of Bacteriology
Volume 2014 (2014), Article ID 795281, 7 pages
http://dx.doi.org/10.1155/2014/795281
Research Article

Antibiofilm Activity of Manuka Honey in Combination with Antibiotics

1Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street S.W., Rochester, MN 55905, USA
2Mayo High School, 1420 11th Avenue S.E., Rochester, MN 55904, USA
3Division of Infectious Disease, Department of Medicine, Mayo Clinic, 200 First Streer S.W., Rochester, MN 55905, USA

Received 17 November 2013; Revised 9 January 2014; Accepted 23 January 2014; Published 26 February 2014

Academic Editor: Mariagrazia Perilli

Copyright © 2014 Michelle E. M. Campeau and Robin Patel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. H. S. Kwakman, A. A. te Velde, L. de Boer, C. M. J. E. Vandenbroucke-Grauls, and S. A. J. Zaat, “Two major medicinal honeys have different mechanisms of bactericidal activity,” PLoS One, vol. 6, no. 3, Article ID e17709, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Lu, D. A. Carter, L. Turnbull et al., “The effect of New Zealand kanuka, manuka and clover honeys on bacterial growth dynamics and cellular morphology varies according to the species,” PloS One, vol. 8, no. 2, Article ID e55898, 2013. View at Google Scholar
  3. C. J. Adams, C. H. Boult, B. J. Deadman et al., “Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey,” Carbohydrate Research, vol. 343, no. 4, pp. 651–659, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Mavric, S. Wittmann, G. Barth, and T. Henle, “Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand,” Molecular Nutrition and Food Research, vol. 52, no. 4, pp. 483–489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Majtan, J. Klaudiny, J. Bohova et al., “Methylglyoxal-induced modifications of significant honeybee proteinous components in manuka honey: possible therapeutic implications,” Fitoterapia, vol. 83, no. 4, pp. 671–677, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. H. K. P. English, A. R. C. Pack, and P. C. Molan, “The effects of manuka honey on plaque and gingivitis: a pilot study,” Journal of the International Academy of Periodontology, vol. 6, no. 2, pp. 63–67, 2004. View at Google Scholar · View at Scopus
  7. T. Alandejani, J. Marsan, W. Ferris, R. Slinger, and F. Chan, “Effectiveness of honey on Staphylococcus aureus and Pseudomonas aeruginosa biofilms,” Otolaryngology, vol. 141, no. 1, pp. 114–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Merckoll, T. Ø. Jonassen, M. E. Vad, S. L. Jeansson, and K. K. Melby, “Bacteria, biofilm and honey: a study of the effects of honey on “planktonic” and biofilm-embedded chronic wound bacteria,” Scandinavian Journal of Infectious Diseases, vol. 41, no. 5, pp. 341–347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Jervis-Bardy, A. Foreman, S. Bray, L. Tan, and P.-J. Wormald, “Methylglyoxal-infused honey mimics the anti-Staphylococcus aureus biofilm activity of manuka honey: potential Implication in Chronic Rhinosinusitis,” The Laryngoscope, vol. 121, no. 5, pp. 1104–1107, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. S. E. Maddocks, M. S. Lopez, R. S. Rowlands, and R. A. Cooper, “Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins,” Microbiology, vol. 158, no. 3, pp. 781–790, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Okhiria, A. Henriques, N. Burton, A. Peters, and R. Cooper, “Honey modulates biofilms of Pseudomonas aeruginosa in a time and dose dependent manner,” Journal of ApiProduct and ApiMedical Science, vol. 1, no. 2, pp. 6–10, 2009. View at Google Scholar
  12. J. Majtan, J. Bohova, M. Horniackova, J. Klaudiny, and V. Majtan, “Anti-biofilm effects of honey against wound pathogens Proteus mirabilis and Enterobacter cloacae,” Phytotherapy Research, vol. 28, no. 1, pp. 69–75, 2014. View at Publisher · View at Google Scholar
  13. S. E. Maddocks, R. E. Jenkins, R. S. Rowlands, K. J. Purdy, and R. A. Cooper, “Manuka honey inhibits adhesion and invasion of medically important wound bacteria in vitro,” Future Microbiology, vol. 8, no. 12, pp. 1523–1536, 2013. View at Google Scholar
  14. A. V. Kamaratos, K. N. Tzirogiannis, S. A. Iraklianou, G. I. Panoutsopoulos, I. E. Kanellos, and A. I. Melidonis, “Manuka honey-impregnated dressings in the treatment of neuropathic diabetic foot ulcers,” International Wound Journal, 2012. View at Publisher · View at Google Scholar
  15. R. E. Jenkins and R. Cooper, “Synergy between oxacillin and manuka honey sensitizes methicillin-resistant Staphylococcus aureus to oxacillin,” The Journal of Antimicrobial Chemotherapy, vol. 67, no. 6, pp. 1405–1407, 2012. View at Google Scholar
  16. R. Jenkins and R. Cooper, “Improving antibiotic activity against wound pathogens with manuka honey in vitro,” PloS One, vol. 7, no. 9, Article ID e45600, 2012. View at Google Scholar
  17. R. A. Cooper, P. C. Molan, and K. G. Harding, “The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds,” Journal of Applied Microbiology, vol. 93, no. 5, pp. 857–863, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. K. L. Frank, E. J. Reichert, K. E. Piper, and R. Patel, “In vitro effects of antimicrobial agents on planktonic and biofilm forms of Staphylococcus lugdunensis clinical isolates,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 3, pp. 888–895, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. M. G. Botelho, “Fractional inhibitory concentration index of combinations of antibacterial agents against cariogenic organisms,” Journal of Dentistry, vol. 28, no. 8, pp. 565–570, 2000. View at Google Scholar · View at Scopus
  20. R. Jenkins, M. Wootton, R. Howe, and R. Cooper, “Susceptibility to manuka honey of Staphylococcus aureus with varying sensitivities to vancomycin,” International Journal of Antimicrobial Agents, vol. 40, no. 1, pp. 88–89, 2012. View at Google Scholar
  21. V. Mullai and T. Menon, “Bactericidal activity of different types of honey against clinical and environmental isolates of Pseudomonas aeruginosa,” Journal of Alternative and Complementary Medicine, vol. 13, no. 4, pp. 439–441, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Mukherjee, S. Chaki, S. Das, S. Sen, S. K. Dutta, and S. G. Dastidar, “Distinct synergistic action of piperacillin and methylglyoxal against Pseudomonas aeruginosa,” Indian Journal of Experimental Biology, vol. 49, no. 7, pp. 547–551, 2011. View at Google Scholar · View at Scopus
  23. J. M. Packer, J. Irish, B. R. Herbert et al., “Specific non-peroxide antibacterial effect of manuka honey on the Staphylococcus aureus proteome,” International Journal of Antimicrobial Agents, vol. 40, no. 1, pp. 43–50, 2012. View at Google Scholar
  24. R. A. Cooper, L. Jenkins, A. F. M. Henriques, R. S. Duggan, and N. F. Burton, “Absence of bacterial resistance to medical-grade manuka honey,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 29, no. 10, pp. 1237–1241, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. F. Henriques, R. E. Jenkins, N. F. Burton, and R. A. Cooper, “The effect of manuka honey on the structure of Pseudomonas aeruginosa,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 30, no. 2, pp. 167–171, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Jenkins, N. Burton, and R. Cooper, “Manuka honey inhibits cell division in methicillin-resistant Staphylococcus aureus,” Journal of Antimicrobial Chemotherapy, vol. 66, no. 11, Article ID dkr340, pp. 2536–2542, 2011. View at Publisher · View at Google Scholar · View at Scopus