Table of Contents
International Journal of Bacteriology
Volume 2015 (2015), Article ID 147173, 6 pages
http://dx.doi.org/10.1155/2015/147173
Research Article

Highly Sensitive Loop-Mediated Isothermal Amplification for the Detection of Leptospira

1Naval Medical Research Center, Silver Spring, MD 20910, USA
2Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
3Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand

Received 13 October 2014; Revised 19 December 2014; Accepted 29 December 2014

Academic Editor: Christopher M. Parry

Copyright © 2015 Hua-Wei Chen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. V. Evangelista and J. Coburn, “Leptospira as an emerging pathogen: a review of its biology, pathogenesis and host immune responses,” Future Microbiology, vol. 5, no. 9, pp. 1413–1425, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. Hartskeerl, “Leptospira,” in Molecular Detection of Human Bacterial Pathogens, pp. 1169–1188, CRC Press/Taylor and Francis Group, Boca Raton, Fla, USA, 2012. View at Google Scholar
  3. A. R. Bharti, J. E. Nally, J. N. Ricaldi et al., “Leptospirosis: a zoonotic disease of global importance,” The Lancet Infectious Diseases, vol. 3, no. 12, pp. 757–771, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. A. I. Ko, C. Goarant, and M. Picardeau, “Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen,” Nature Reviews Microbiology, vol. 7, no. 10, pp. 736–747, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Suttinont, K. Losuwanaluk, K. Niwatayakul et al., “Causes of acute, undifferentiated, febrile illness in rural Thailand: results of a prospective observational study,” Annals of Tropical Medicine and Parasitology, vol. 100, no. 4, pp. 363–370, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Lessa-Aquino, C. Borges Rodrigues, J. Pablo et al., “Identification of seroreactive proteins of Leptospira interrogans serovar copenhageni using a high-density protein microarray approach,” PLoS Neglected Tropical Diseases, vol. 7, no. 10, Article ID e2499, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. R. U. M. Palaniappan, S. Ramanujam, and Y.-F. Chang, “Leptospirosis: pathogenesis, immunity, and diagnosis,” Current Opinion in Infectious Diseases, vol. 20, no. 3, pp. 284–292, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. A. J. A. McBride, D. A. Athanazio, M. G. Reis, and A. I. Ko, “Leptospirosis,” Current Opinion in Infectious Diseases, vol. 18, no. 5, pp. 376–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Thaipadunpanit, W. Chierakul, V. Wuthiekanun et al., “Diagnostic accuracy of real-time PCR assays targeting 16S rRNA and lipl32 genes for human leptospirosis in Thailand: a case-control study,” PLoS ONE, vol. 6, no. 1, Article ID e16236, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Notomi, H. Okayama, H. Masubuchi et al., “Loop-mediated isothermal amplification of DNA,” Nucleic Acids Research, vol. 28, no. 12, article E63, 2000. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Mori, K. Nagamine, N. Tomita, and T. Notomi, “Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation,” Biochemical and Biophysical Research Communications, vol. 289, no. 1, pp. 150–154, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Tomita, Y. Mori, H. Kanda, and T. Notomi, “Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products,” Nature Protocols, vol. 3, no. 5, pp. 877–882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Goto, E. Honda, A. Ogura, A. Nomoto, and K.-I. Hanaki, “Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue,” BioTechniques, vol. 46, no. 3, pp. 167–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Pinne and D. A. Haake, “LipL32 is a subsurface lipoprotein of Leptospira interrogans: presentation of new data and reevaluation of previous studies,” PLoS ONE, vol. 8, no. 1, Article ID e51025, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. D. A. Haake, G. Chao, R. L. Zuerner et al., “The Leptospiral major outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection,” Infection and Immunity, vol. 68, no. 4, pp. 2276–2285, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Ding, J. Yan, and Y.-F. Mao, “Genotyping of LipL41 genes from Leptospira interrogans serogroups and immunological identification of the expression products,” Chinese Journal of Microbiology and Immunology, vol. 24, no. 11, pp. 859–865, 2004. View at Google Scholar · View at Scopus
  17. X. Lin, Y. Chen, Y. Lu, J. Yan, and J. Yan, “Application of a loop-mediated isothermal amplification method for the detection of pathogenic Leptospira,” Diagnostic Microbiology and Infectious Disease, vol. 63, no. 3, pp. 237–242, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. L. Wastling, K. Picozzi, A. S. L. Kakembo, and S. C. Welburn, “LAMP for human African trypanosomiasis: a comparative study of detection formats,” PLoS Neglected Tropical Diseases, vol. 4, no. 11, article e865, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. R. E. Reitstetter, “Development of species-specific PCR primer sets for the detection of Leptospira,” FEMS Microbiology Letters, vol. 264, no. 1, pp. 31–39, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. World Health Organization, Human Leptospirosis: Guidance for Diagnosis, Surveillance and Control, World Health Organization, Lyon, France, 2003.
  21. A. Slack, M. Symonds, M. Dohnt, C. Harris, D. Brookes, and L. Smythe, “Evaluation of a modified Taqman assay detecting pathogenic Leptospira spp. against culture and Leptospira-specific IgM enzyme-linked immunosorbent assay in a clinical environment,” Diagnostic Microbiology and Infectious Disease, vol. 57, no. 4, pp. 361–366, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Ahmed, M. F. M. Engelberts, K. R. Boer, N. Ahmed, and R. A. Hartskeerl, “Development and validation of a real-time PCR for detection of pathogenic Leptospira species in clinical materials,” PLoS ONE, vol. 4, no. 9, Article ID e7093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Sonthayanon, W. Chierakul, V. Wuthiekanun et al., “Accuracy of loop-mediated isothermal amplification for diagnosis of human leptospirosis in Thailand,” The American Journal of Tropical Medicine and Hygiene, vol. 84, no. 4, pp. 614–620, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Koizumi, C. Nakajima, T. Harunari et al., “A new loop-mediated isothermal amplification method for rapid, simple, and sensitive detection of Leptospira spp. in urine,” Journal of Clinical Microbiology, vol. 50, no. 6, pp. 2072–2074, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Suwancharoen, C. Kulchim, C. Chirathaworn, and S. Yoshida, “Development of a novel primer combination to detect pathogenic Leptospira by loop-mediated isothermal amplification,” Journal of Microbiological Methods, vol. 91, no. 1, pp. 171–173, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Huber, D. Ji, L. Howell et al., “Loop-mediated isothermal amplification assay targeting the 47-Kda gene of Orientia tsutsugamushi: a rapid and sensitive alternative to real-time PCR,” Journal of Medical Microbiology & Diagnosis, vol. 1, article 112, 2012. View at Publisher · View at Google Scholar