Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biodiversity
Volume 2013, Article ID 946361, 13 pages
http://dx.doi.org/10.1155/2013/946361
Research Article

Spatial Distribution of Zooplankton Diversity across Temporary Pools in a Semiarid Intermittent River

Grupo Ecologia de Rios do Semiárido, Universidade Estadual da Paraíba-UEPB, Rua Horácio Trajano de Oliveira, S/N, Cristo Redentor, 58020-540 João Pessoa, PB, Brazil

Received 14 January 2013; Revised 17 May 2013; Accepted 19 May 2013

Academic Editor: José Manuel Guerra-García

Copyright © 2013 Thaís X. Melo and Elvio S. F. Medeiros. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This study describes the richness and density of zooplankton across temporary pools in an intermittent river of semiarid Brazil and evaluates the partitioning of diversity across different spatial scales during the wet and dry periods. Given the highly patchy nature of these pools it is hypothesized that the diversity is not homogeneously distributed across different spatial scales but concentrated at lower levels. The plankton fauna was composed of 37 species. Of these 28 were Rotifera, 5 were Cladocera, and 4 were Copepoda (nauplii of Copepoda were also recorded). We showed that the zooplankton presents a spatially segregated pattern of species composition across river reaches and that at low spatial scales (among pools or different habitats within pools) the diversity of species is likely to be affected by temporal changes in physical and chemical characteristics. As a consequence of the drying of pool habitats, the spatial heterogeneity within the study river reaches has the potential to increase β diversity during the dry season by creating patchier assemblages. This spatial segregation in community composition and the patterns of partition of the diversity across the spatial scales leads to a higher total diversity in intermittent streams, compared to less variable environments.