Table of Contents
International Journal of Combinatorics
Volume 2012, Article ID 831489, 7 pages
http://dx.doi.org/10.1155/2012/831489
Research Article

Graphs with Constant Sum of Domination and Inverse Domination Numbers

Department of Mathematics, Manonmaniam Sundaranar University, Tamil Nadu, Tirunelveli 627 012, India

Received 1 March 2012; Accepted 10 July 2012

Academic Editor: Martin Kochol

Copyright © 2012 T. Tamizh Chelvam and T. Asir. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, NY, USA, 1998.
  2. V. R. Kulli and S. C. Sigarkanti, โ€œInverse domination in graphs,โ€ National Academy Science Letters, vol. 14, pp. 473โ€“475, 1991. View at Google Scholar
  3. O. Ore, Theory of Graphs, vol. 38, American Mathematical Society Colloquium, Providence, RI, USA, 1962.
  4. E. J. Cockayne, S. T. Hedetniemi, and R. Laskar, โ€œGallai theorems for graphs, hypergraphs, and set systems,โ€ Discrete Mathematics, vol. 72, no. 1–3, pp. 35โ€“47, 1988. View at Google Scholar ยท View at Scopus
  5. X. Baogen, E. J. Cockayne, T. W. Haynes, S. T. Hedetniemi, and Z. Shangchao, โ€œExtremal graphs for inequalities involving domination parameters,โ€ Discrete Mathematics, vol. 216, no. 1–3, pp. 1โ€“10, 2000. View at Google Scholar ยท View at Scopus
  6. B. Randerath and L. Volkmann, โ€œCharacterization of graphs with equal domination and covering number,โ€ Discrete Mathematics, vol. 191, no. 1–3, pp. 159โ€“169, 1998. View at Google Scholar ยท View at Scopus
  7. G. S. Domke, J. E. Dunbar, and L. R. Markus, โ€œThe inverse domination number of a graph,โ€ Ars Combinatoria, vol. 72, pp. 149โ€“160, 2004. View at Google Scholar ยท View at Scopus
  8. T. Tamizh Chelvam and G. S. Grace Prema, โ€œEquality of domination and inverse domination numbers,โ€ Ars Combinatoria, vol. 95, pp. 103โ€“111, 2010. View at Google Scholar ยท View at Scopus
  9. S. M. Hedetniemi, S. T. Hedetnimi, R. C. Laskar, L. Markus, and P. J. Slater, โ€œDisjoint dominating sets in graphs,โ€ in Proceedings of the International Conference on Discrete Mathematics, vol. 7 of Ramanujan Mathematical Society Lecture Notes Series, pp. 87โ€“100, 2008.
  10. D. W. Bange, A. E. Barkauskas, and P. J. Slater, โ€œA constructive characterization of trees with two disjoint minimum dominating sets,โ€ Congressus Numerantium, vol. 21, pp. 101โ€“112, 1978. View at Google Scholar
  11. T. W. Haynes and M. A. Henning, โ€œTrees with two disjoint minimum independent dominating sets,โ€ Discrete Mathematics, vol. 304, no. 1–3, pp. 69โ€“78, 2005. View at Publisher ยท View at Google Scholar ยท View at Scopus
  12. S. Lakshmivarahan and S. K. Dhall, โ€œRing, torus and hypercube architectures/algorithms for parallel computing,โ€ Parallel Computing, vol. 25, no. 13, pp. 1877โ€“1906, 1999. View at Publisher ยท View at Google Scholar ยท View at Scopus
  13. I. J. Dejter and O. Serra, โ€œEfficient dominating sets in Cayley graphs,โ€ Discrete Applied Mathematics, vol. 129, pp. 319โ€“328, 2003. View at Publisher ยท View at Google Scholar