Table of Contents Author Guidelines Submit a Manuscript
International Journal of Digital Multimedia Broadcasting
Volume 2009, Article ID 186960, 12 pages
http://dx.doi.org/10.1155/2009/186960
Research Article

Statistical Time-Frequency Multiplexing of HD Video Traffic in DVB-T2

1Department of Signal Processing, Tampere University of Technology, 33720 Tampere, Finland
2Media Laboratory, Nokia Research Center, 33720 Tampere, Finland

Received 27 May 2008; Revised 25 August 2008; Accepted 21 October 2008

Academic Editor: Susanna Spinsante

Copyright © 2009 Mehdi Rezaei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger, “Long-range dependence in variable-bit-rate video traffic,” IEEE Transactions on Communications, vol. 43, no. 234, pp. 1566–1579, 1995. View at Publisher · View at Google Scholar
  2. H. E. Hurst, R. P. Black, and Y. M. Simaika, Long-Term Storage: An Experimental Study, Constable, London, UK, 1965.
  3. M. R. Izquierdo and D. S. Reeves, “Survey of statistical source models for variable-bit-rate compressed video,” Multimedia Systems, vol. 7, no. 3, pp. 199–213, 1999. View at Publisher · View at Google Scholar
  4. B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J. D. Robbins, “Performance models of statistical multiplexing in packet video communications,” IEEE Transactions on Communications, vol. 36, no. 7, pp. 834–844, 1988. View at Publisher · View at Google Scholar
  5. D. P. Heyman, A. Tabatabai, and T. V. Lakshman, “Statistical analysis and simulation study of video teleconference traffic in ATM networks,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 2, no. 1, pp. 49–59, 1992. View at Publisher · View at Google Scholar
  6. D. M. Lucantoni, M. F. Neuts, and A. R. Reibman, “Methods for performance evaluation of VBR video traffic models,” IEEE/ACM Transactions on Networking, vol. 2, no. 2, pp. 176–180, 1994. View at Publisher · View at Google Scholar
  7. R. Grunenfelder, J. P. Cosmas, S. Manthorpe, and A. Odinma-Okafor, “Characterization of video codecs as autoregressive moving average processes and related queueing system performance,” IEEE Journal on Selected Areas in Communications, vol. 9, no. 3, pp. 284–293, 1991. View at Publisher · View at Google Scholar
  8. G. Ramamurthy and B. Sengupta, “Modeling and analysis of a variable bit rate video multiplexer,” in Proceedings of the 11th IEEE Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM '92), vol. 2, pp. 817–827, Florence, Italy, May 1992. View at Publisher · View at Google Scholar
  9. D. P. Heyman and T. V. Lakshman, “Source models for VBR broadcast-video traffic,” IEEE/ACM Transactions on Networking, vol. 4, no. 1, pp. 40–48, 1996. View at Publisher · View at Google Scholar
  10. B. Melamed, D. Raychaudhuri, B. Sengupta, and J. Zdepski, “TES-based video source modeling for performance evaluation of integrated networks,” IEEE Transactions on Communications, vol. 42, no. 10, pp. 2773–2777, 1994. View at Publisher · View at Google Scholar
  11. A. A. Lazar, G. Pacifici, and D. E. Pendarakis, “Modeling video sources for real-time scheduling,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '93), vol. 2, pp. 835–839, Houston, Tex, USA, November 1993. View at Publisher · View at Google Scholar
  12. D. Reininger, B. Melamed, and D. Raychaudhuri, “Variable bit-rate MPEG video: characteristics, modeling and multiplexing,” in Proceedings of the 14th International Teletraffic Congress (ITC), pp. 295–306, Antibes Juan-les-Pins, France, June 1994.
  13. M. Garrett and W. Willinger, “Analysis, modaling and generation of self-similar VBR video traffic,” ACM SIGCOMM Computer Communication Review, vol. 24, no. 4, pp. 269–280, 1994. View at Publisher · View at Google Scholar
  14. C. Huang, M. Devetsikiotis, I. Lambadaris, and R. Kaye, “Modeling and simulation of self-similar variable bit-rate compressed video: a unified approach,” ACM SIGCOMM Computer Communication Review, vol. 25, no. 4, pp. 114–125, 1995. View at Publisher · View at Google Scholar
  15. M. Krunz and S. K. Tripathi, “On the characterization of VBR MPEG streams,” in Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, vol. 25, pp. 192–202, Seattle, Wash, USA, June 1997. View at Publisher · View at Google Scholar
  16. D. Liu, E. I. Sára, and W. Sun, “Nested auto-regressive processes for MPEG-encoded video traffic modeling,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 2, pp. 169–183, 2001. View at Publisher · View at Google Scholar
  17. U. K. Sarkar, S. Ramakrishnan, and D. Sarkar, “Modeling full-length video using Markov-modulated gamma-based framework,” IEEE/ACM Transactions on Networking, vol. 11, no. 4, pp. 638–649, 2003. View at Publisher · View at Google Scholar
  18. M. Dai, D. Loguinov, and H. Radha, “A hybrid wavelet framework for modeling VBR video traffic,” in Proceedings of the International Conference on Image Processing (ICIP '04), vol. 5, pp. 3125–3128, Singapore, October 2004. View at Publisher · View at Google Scholar
  19. M. Rezaei, I. Bouazizi, and M. Gabbouj, “A model for controlled VBR video traffic,” in Proceedings of the IEEE International Conference on Signal Processing and Communications (ICSPC '07), Dubai, UAE, November 2007.
  20. M. Rezaei, I. Bouazizi, and M. Gabbouj, “Generating antipersistent VBR video traffic,” in Proceedings of the Picture Coding Symposium (PCS '07), p. 6, Lisbon, Portugal, November 2007.
  21. ISO/IEC JTC/SC29/WG11/N0400 MPEG93/457, Test Model 5, TM5, April 1993.
  22. M. Rezaei, M. M. Hannuksela, and M. Gabbouj, “Semi-fuzzy rate controller for variable bit rate video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 18, no. 5, pp. 633–644, 2008. View at Publisher · View at Google Scholar
  23. ETSI, “Generic Stream Encapsulation (GSE) Protocol,” ETSI standard, DVD Document A116, May 2007.
  24. ETSI, “Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications (DVB-S2),” ETSI standard, EN 302 307, V1.1.2, Jun 2006.
  25. Microsoft, http://www.microsoft.com/windows/windowsmedia/musicandvideo/hdvideo/contentshowcase.aspx.
  26. HD-Channel, http://www.hd-channel.com.
  27. http://www.highdefforum.com/showthread.php?t=6537.
  28. http://ffmpeg.mplayerhq.hu.