Table of Contents Author Guidelines Submit a Manuscript
International Journal of Digital Multimedia Broadcasting
Volume 2011 (2011), Article ID 502087, 14 pages
Research Article

Cognitive Radio for Smart Grid: Theory, Algorithms, and Security

1Department of Electrical and Computer Engineering, Center for Manufacturing Research, Tennessee Technological University, Cookeville, TN 38505, USA
2Cognitive Radio Institute, Tennessee Technological University, Cookeville, TN 38505, USA

Received 9 February 2011; Accepted 24 March 2011

Academic Editor: Chi Zhou

Copyright © 2011 Raghuram Ranganathan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Recently, cognitive radio and smart grid are two areas which have received considerable research impetus. Cognitive radios are intelligent software defined radios (SDRs) that efficiently utilize the unused regions of the spectrum, to achieve higher data rates. The smart grid is an automated electric power system that monitors and controls grid activities. In this paper, the novel concept of incorporating a cognitive radio network as the communications infrastructure for the smart grid is presented. A brief overview of the cognitive radio, IEEE 802.22 standard and smart grid, is provided. Experimental results obtained by using dimensionality reduction techniques such as principal component analysis (PCA), kernel PCA, and landmark maximum variance unfolding (LMVU) on Wi-Fi signal measurements are presented in a spectrum sensing context. Furthermore, compressed sensing algorithms such as Bayesian compressed sensing and the compressed sensing Kalman filter is employed for recovering the sparse smart meter transmissions. From the power system point of view, a supervised learning method called support vector machine (SVM) is used for the automated classification of power system disturbances. The impending problem of securing the smart grid is also addressed, in addition to the possibility of applying FPGA-based fuzzy logic intrusion detection for the smart grid.