Table of Contents Author Guidelines Submit a Manuscript
International Journal of Digital Multimedia Broadcasting
Volume 2013, Article ID 319594, 20 pages
http://dx.doi.org/10.1155/2013/319594
Research Article

Performance Evaluation of Concurrent Multipath Video Streaming in Multihomed Mobile Networks

Centre for Audio-Visual Communications and Networks, School of Computing, University of the West of Scotland, Paisley PA1 2BE, UK

Received 30 December 2012; Revised 9 July 2013; Accepted 15 July 2013

Academic Editor: Fabrice Labeau

Copyright © 2013 James Nightingale et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of the H.264/AVC standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–1120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Schierl, T. Stockhammer, and T. Wiegand, “Mobile video transmission using scalable video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1204–1217, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Wien, R. Cazoulat, A. Graffunder, A. Hutter, and P. Amon, “Real-time system for adaptive video streaming based on SVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1227–1237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. International Telecommunications Union (ITU), “High efficiency video coding,” ITU-T Recommendation H. 265, http://www.itu.int/rec/T-REC-H.265-201304-I.
  6. J. Chen, J. Boyce, Y. Ye, and M. Hannuksela, “SHVC working draft 2,” JCT-VC Document JCTVC-M1008, April 2013. View at Google Scholar
  7. K. Chebrolu and R. R. Rao, “Bandwidth aggregation for real-time applications in heterogeneous wireless networks,” IEEE Transactions on Mobile Computing, vol. 5, no. 4, pp. 388–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Chebrolu and R. R. Rao, “Selective frame discard for interactive video,” in Proceedings of the IEEE International Conference on Communications (ICC '04), pp. 4097–4102, June 2004. View at Scopus
  9. J. C. Fernandez, T. Taleb, M. Guizani, and N. Kato, “Bandwidth aggregation-aware dynamic QoS negotiation for real-time video streaming in next-generation wireless networks,” IEEE Transactions on Multimedia, vol. 11, no. 6, pp. 1082–1093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Jurca and P. Frossard, “Video packet selection and scheduling for multipath streaming,” IEEE Transactions on Multimedia, vol. 9, no. 3, pp. 629–641, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. M.-F. Tsai, N. Chilamkurti, J. H. Park, and C.-K. Shieh, “Multi-path transmission control scheme combining bandwidth aggregation and packet scheduling for real-time streaming in multi-path environment,” IET Communications, vol. 4, no. 6, pp. 937–945, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Nightingale, Q. Wang, and C. Grecos, “Optimised transmission of H.264 scalable video streams over multiple paths in mobile networks,” IEEE Transactions on Consumer Electronics, vol. 56, no. 4, pp. 2161–2169, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Nightingale, Q. Wang, and C. Grecos, “Removing path-switching cost in video delivery over multiple paths in mobile networks,” IEEE Transactions on Consumer Electronics, vol. 58, no. 1, pp. 38–46, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, “Network mobility (NEMO) basic support protocol,” RFC 3963, 2005.
  15. Q. Wang, T. Hof, F. Filali et al., “QoS-aware network-supported architecture to distribute application flows over multiple network interfaces for B3G users,” Wireless Personal Communications, vol. 48, no. 1, pp. 113–140, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Stewart, “Stream control transmission protocol,” RFC 4960, 2007.
  17. J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent multipath transfer using SCTP multihoming over independent end-to-end paths,” IEEE/ACM Transactions on Networking, vol. 14, no. 5, pp. 951–964, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. R. Iyengar, P. D. Amer, and R. Stewart, “Performance implications of a bounded receive buffer in concurrent multipath transfer,” Computer Communications, vol. 30, no. 4, pp. 818–829, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Liao, J. Wang, T. Li, X. Zhu, and P. Zhang, “Sender-based multipath out-of-order scheduling for high-definition videophone in multi-homed devices,” IEEE Transactions on Consumer Electronics, vol. 56, no. 3, pp. 1466–1472, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Perkins, “IP mobility support for IPv4,” RFC 3344, 2002.
  21. D. Johnson, C. Perkins, and J. Arko, “Mobility support for IPv6,” RFC 3775, 2004.
  22. “HEVC Reference Software Test Model (HM),” https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/.
  23. J. Nightingale, Q. Wang, and C. Grecos, “OPSSA: a media-aware scheduling algorithm for scalable video streaming over simultaneous paths in NEMO-based Mobile Networks,” in Proceedings of the IEEE 73rd Vehicular Technology Conference (VTC '11), May 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Yuan, Z. Zhang, J. Li et al., “Extension of SCTP for concurrent multi-path transfer with parallel subflows,” in Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC '10), pp. 1–6, Sydny, Australia, April 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Wang, W. Feng, S.-D. Zhang, and H.-K. Zhang, “Concurrent multipath transfer protocol used in ad hoc networks,” IET Communications, vol. 4, no. 7, pp. 884–893, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. C.-M. Huang, M.-S. Lin, and L.-H. Chang, “The design of mobile concurrent multipath transfer in multihomed wireless mobile networks,” Computer Journal, vol. 53, no. 10, pp. 1704–1718, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. “Standard and metropolitan area networks: media independent handover services,” IEEE Standard 802. 21, 2006.
  28. T. Dreibholz, E. P. Rathgeb, R. Seggelmann, and M. Tuxen, “Transmission scheduling optimizations for concurrent multipath transfer,” in Proceedings of the 8th International Workshop on Protocols for Future, Large-Scale and Diverse Network Transports (PFLDNeT '10), pp. 2074–5168, Pa, USA, November 2010.
  29. P. Natarajan, N. Ekiz, P. D. Amer, and R. Stewart, “Concurrent multipath transfer during path failure,” Computer Communications, vol. 32, no. 15, pp. 1577–1587, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M.-F. Tsai, N. K. Chilamkurti, S. Zeadally, and A. Vinel, “Concurrent multipath transmission combining forward error correction and path interleaving for video streaming,” Computer Communications, vol. 34, no. 9, pp. 1125–1136, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Liao, J. Wang, T. Li, and X. Zhu, “Introducing multipath selection for concurrent multipath transfer in the future internet,” Computer Networks, vol. 55, no. 4, pp. 1024–1035, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. I. Amonou, N. Cammas, S. Kervadec, and S. Pateux, “Optimized rate-distortion extraction with quality layers in the scalable extension of H.264/AVC,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1186–1193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Reichel, H. Schwarz, and M. Wien, “Joint Scalable Video Model 11 (JSVM 11),,” Tech. Rep. no. JVT-X202, Joint Video Team, July 2007. View at Google Scholar
  34. S. Wenger, Y.-K. Wang, T. Schierl, and A. Eleftheriadis, “RTP payload format for scalable video coding,” RFC 6190, 2011.
  35. D. Kaspar, K. Evensen, A. F. Hansen, P. Engelstady, P. Halvorsen, and C. Griwodz, “An analysis of the heterogeneity and IP packet reordering over multiple wireless networks,” in Proceedings of the IEEE Symposium on Computers and Communications (ISCC '09), pp. 637–642, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. D. T. Nguyen and J. Ostermann, “Congestion control for scalable video streaming using the scalability extension of H.264/AVC,” IEEE Journal on Selected Topics in Signal Processing, vol. 1, no. 2, pp. 246–253, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. Wireshark, http://www.wireshark.org/docs/.
  38. J. Nightingale, Q. Wang, and C. Grecos, “Performance evaluation of scalable video streaming in multihomed mobile networks,” Performance Evaluation Review, vol. 39, no. 2, pp. 29–31, 2011. View at Google Scholar
  39. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobsen, “RTP: a transport protocol for real-time applications,” RFC 1889, 1996.
  40. J. Asghar, F. Le Faucheur, and I. Hood, “Preserving video quality in IPTV networks,” IEEE Transactions on Broadcasting, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Zhang and N. Ansari, “On assuring end-to-end QoE in next generation networks: challenges and a possible solution,” IEEE Communications Magazine, vol. 49, no. 7, pp. 185–191, 2011. View at Publisher · View at Google Scholar · View at Scopus